\(\sqrt{16x}=8\)

Ai giải giúp ạ! Cần gấp!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2016

 Tìm x, biết: 

                   \(\sqrt{16x}=8\) 

             \(\Leftrightarrow16x=8^2\)

             \(\Leftrightarrow16x=64\\\)

             \(\Leftrightarrow x=64:16\)

             \(\Leftrightarrow x=4\)

24 tháng 7 2016

x =4

10 tháng 5 2019

may tinh toi khong ra ket qua cho ban duoc

\(A^2=2\left(x^2+1\right)+2\sqrt{\left(x^2+1\right)^2-x^2}.\)

          \(=2\left(x^2+1\right)+2\sqrt{x^4+x^2+1}\)

Vì \(x^2\ge0\)\(\Rightarrow A^2\ge2+2=4\)\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi x=0

27 tháng 7 2016

a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-2}{2}\)

c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))

\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}-3}{3}\)

27 tháng 7 2016

b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )

10 tháng 12 2019

\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)

\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)

\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)

10 tháng 12 2019

\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)

\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)

\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)

\(\Leftrightarrow2\sqrt{x-8}+16=x\)

\(\Leftrightarrow x=24\)

26 tháng 6 2017

a, \(\sqrt{9x+9}-4\sqrt{\dfrac{x+1}{4}}=5\) \(x\ge-1\)

\(\Leftrightarrow3\sqrt{x+1}-2\sqrt{x+1}=5\)

\(\Leftrightarrow x+1=25\Leftrightarrow x=24\)

26 tháng 6 2017

2) "biểu thức"=\(\sqrt{x-5}-4\sqrt{x-5}-\sqrt{x-5}=12\Leftrightarrow4\sqrt{x-5}=12\Leftrightarrow\sqrt{x-5}=3\Leftrightarrow x=14\)

Kl: x=14

3) "biểu thức"=\(4\sqrt{x-1}-3\sqrt{x-1}+\sqrt{x-1}=5\Leftrightarrow2\sqrt{x-1}=5\Leftrightarrow\sqrt{x-1}=\dfrac{5}{2}\Leftrightarrow x=\left(\dfrac{5}{2}\right)^2+1=\dfrac{29}{4}\)

Kl: x=29/4

13 tháng 10 2016

\(\sqrt{x}+2\sqrt{1-x}\le\sqrt{\left(1+4\right)}=\sqrt{5}\)

Mà ta có điều kiện là \(0\le x\le1\)

=> E \(\ge1\)

Vậy GTLN là \(\sqrt{5}\)đạt được khi x = \(\frac{1}{5}\)

Đạt GTNN là 1 khi x = 1

30 tháng 8 2020

Bài làm:

Ta có: \(\sqrt{7+\sqrt{2x}}=3+\sqrt{5}\)

\(\Leftrightarrow7+\sqrt{2x}=\left(3+\sqrt{5}\right)^2\)

\(\Leftrightarrow7+\sqrt{2x}=14+6\sqrt{5}\)

\(\Leftrightarrow\sqrt{2x}=7+6\sqrt{5}\)

\(\Leftrightarrow2x=\left(7+6\sqrt{5}\right)^2\)

\(\Leftrightarrow2x=229+84\sqrt{5}\)

\(\Rightarrow x=\frac{229+84\sqrt{5}}{2}\)