Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{x+3}{\left(x-1\right)\left(x+1\right)}-\dfrac{1}{x\left(x+1\right)}\)
\(=\dfrac{x^2+3x-x+1}{x\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{x\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x\left(x-1\right)}\)
b: \(=\dfrac{24y^5}{7x^2}\cdot\dfrac{-21x}{12y^3}=2y^2\cdot\dfrac{-3}{x}=\dfrac{-6y^2}{x}\)
c: \(=\dfrac{-3\left(x-1\right)}{\left(x+1\right)^2}\cdot\dfrac{x+1}{6\left(x-1\right)\left(x+1\right)}=\dfrac{-1}{2\left(x+1\right)}\)
d: \(=\dfrac{7x+2}{3\left(2x-y\right)}\cdot\dfrac{6x\left(2x-y\right)}{2\left(7x+2\right)}=x\)
\(\left(x+1\right)^2=x+1\)
\(\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x+1\right)\left(x+1-1\right)=0\)
\(\left(x+1\right)x=0\)
\(\orbr{\begin{cases}x+1=0\\x=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-1\\x=0\end{cases}}\)vậy.....
\(x\left(x-5\right)^2-4x+20=0\)
\(x\left(x-5\right)^2-4\left(x-5\right)=0\)
\(\left(x-5\right)\left[x\left(x-5\right)-4\right]=0\)
\(\left(x-5\right)\left(x^2-5x-4\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2-5x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-0,7015621187\end{cases}}}\)vậy.........
\(x\left(x+6\right)-7x-42=0\)
\(x\left(x+6\right)-7\left(x+6\right)=0\)
\(\left(x+6\right)\left(x-7\right)=0\)
\(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}}\) vậy....
\(x^3-5x^2+x-5=0\)
\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\orbr{\begin{cases}x-5=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x^2=-1\Rightarrow x\in\Phi\end{cases}}}\)vậy........
\(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x-2\right)\left(x^3+10x\right)=0\)
\(\orbr{\begin{cases}x-2=0\\x^3+10x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)vậy..............
nhớ chọn mk nha
a) (2x - 3)2 = (x + 5)2
=> 4x2 - 12x + 9 = x2 + 10x + 25
=> 4x2 - 12x + 9 - (x2 + 10x + 25) = 0
=> 3x2 - 22x - 16 = 0
=> 3x2 - 24x + 2x - 16 = 0
=> 3x(x - 8) + 2(x - 8) = 0
=> (3x + 2)(x - 8) = 0
=> \(\orbr{\begin{cases}3x+2=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=8\end{cases}}\)
b) x2(x - 1) - 4x2 + 8x - 4 = 0
=> x2(x - 1) - (2x - 2)2 = 0
=> x2(x - 1) - [2(x- 1)]2 = 0
=> x2(x - 1) - 4(x - 1)2 = 0
=> (x - 1)(x2 - 4(x - 1) = 0
=> (x - 1)(x2 - 4x + 4) = 0
=> (x - 1)(x - 2)2 = 0
=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
c) x2 + 7x + 12 = 0
=> x2 + 3x + 4x + 12 = 0
=> x(x + 3) + 4(x + 3) = 0
=> (x + 4)(x + 3) = 0
=> \(\orbr{\begin{cases}x+4=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=-3\end{cases}}\)
d) x2 + 3x - 18 = 0
=> x2 + 6x - 3x - 18 = 0
=> x(x + 6) - 3(x + 6) = 0
=> (x - 3)(x + 6) = 0
=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
e) x(x + 6) - 7x - 42 = 0
=> x(x + 6) - 7(x + 6) = 0
=> (x - 7)(x + 6) = 0
=> \(\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)
1. ( 2x - 3 )2 = ( x + 5 )2
<=> ( 2x - 3 )2 - ( x + 5 )2 = 0
<=> [ ( 2x - 3 ) - ( x + 5 ) ][ ( 2x - 3 ) + ( x + 5 ) ] = 0
<=> ( 2x - 3 - x - 5 )( 2x - 3 + x + 5 ) = 0
<=> ( x - 8 )( 3x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)
2. x2( x - 1 ) - 4x2 + 8x - 4 = 0
<=> x2( x - 1 ) - ( 4x2 - 8x + 4 ) = 0
<=> x2( x - 1 ) - 4( x2 - 2x + 1 ) = 0
<=> x2( x - 1 ) - 4( x - 1 )2 = 0
<=> ( x - 1 )[ x2 - 4( x - 1 ) ] = 0
<=> ( x - 1 )( x2 - 4x + 4 ) = 0
<=> ( x - 1 )( x - 2 )2 = 0
<=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
3. x2 + 7x + 12 = 0
<=> x2 + 3x + 4x + 12 = 0
<=> x( x + 3 ) + 4( x + 3 ) = 0
<=> ( x + 3 )( x + 4 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)
4. x2 + 3x - 18 = 0
<=> x2 - 3x + 6x - 18 = 0
<=> x( x - 3 ) + 6( x - 3 ) = 0
<=> ( x - 3 )( x + 6 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
5. x( x + 6 ) - 7x - 42 = 0
<=> x( x + 6 ) - 7( x + 6 ) = 0
<=> ( x + 6 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}\)
a. \(\left(x-1\right)^2+3x.\left(x-2\right)=1\)
\(\Leftrightarrow x^2-2x+1+3x^2-6x-1=0\) \(\Leftrightarrow4x^2-8x=0\) \(\Leftrightarrow4x.\left(x-2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}4x=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy tập nghiệm của phương trình là S = { 0 ; 2 }
b) \(x^3-7x-6=0\) \(\Leftrightarrow x^3+2x^2-2x^2-4x-3x-6=0\)
\(\Leftrightarrow\left(x^3+2x^2\right)-\left(2x^2+4x\right)-\left(3x+6\right)=0\) \(\Leftrightarrow x^2.\left(x+2\right)-2x.\left(x+2\right)-3.\left(x+2\right)=0\)
\(\Leftrightarrow\) \(\left(x+2\right).\left(x^2-2x-3\right)=0\) \(\Leftrightarrow\)\(\left(x+2\right).\left[\left(x^2-2x+1\right)-4\right]=0\)
\(\Leftrightarrow\left(x+2\right).\left[\left(x-1\right)^2-2^2\right]=0\) \(\Leftrightarrow\left(x+2\right).\left(x-1+2\right).\left(x-1-2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(x+1\right).\left(x-3\right)=0\)\(\Leftrightarrow\hept{\begin{cases}x+2=0\\x+1=0\\x-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\x=-1\\x=3\end{cases}}\)
Vậy tập nghiệm của phương trình là S = { -2 ; -1 ; 3 }
\(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(3x-4\right)^2-\left(2x+2\right)^2=0\)
\(\Leftrightarrow\left(3x-4-2x-2\right)\left(3x-4+2x+2\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\) ( thỏa mãn )
Vậy : ...
1/ \(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)
\(\Leftrightarrow9x^2-24x+16-4\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow9x^2-24x+16-4x^2-8x-4=0\)
\(\Leftrightarrow5x^2-32x+12=0\)
\(\Leftrightarrow5x^2-30x-2x+12=0\)
\(\Leftrightarrow5x\left(x-6\right)-2\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\5x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\)
Vậy tập nghiệm của phương trình là : \(S=\left\{6;\frac{2}{5}\right\}\)
2/ \(x^4+2x^3-3x^2-8x-4=0\)
\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)
\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+2x^2+x-2x^2-4x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+1\right)^2\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x+2=0\)
hoặc \(x+1=0\)
hoặc \(x-2=0\)
\(\Leftrightarrow\)\(x=2\)
hoặc \(x=-1\)
hoặc \(x=2\)
Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-1\right\}\)
b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18
4x 2 -4x+1-4x 2+25=18
26-4x=18
4x=8
x=2
a,27x-18=2x-3x^2
<=> 3x^2-2x+27-18x=0
<=> 3x^2-20x+27=0
\(\Delta\)= 20^2-4-12.27
tính \(\Delta\)rồi tìm x1 ,x2
\(\Leftrightarrow7x^2\left(x+2\right)-7\left(x+2\right)\)
\(\Leftrightarrow\left(7x-7\right)\left(x+2\right)\)
suy ra hai trường hợp :
1 : \(7x-7=0\)
\(x=1\)
2: \(x+2=0\)
\(x=-2\)
Ta có:
\(7x^2\left(x+2\right)-7x-14=0\)
\(\Rightarrow7x^3+14x^2-7x-14=0\)
\(\Rightarrow7x\left(x^2-1\right)+14\left(x^2-1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left(7x+14\right)=0\)
\(\Rightarrow x^2-1=0\)hoặc \(7x+14=0\)
\(\Rightarrow x\in\){1;-1;-2}