Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x-1\right)\left(2x+1\right)}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{\left(2x-1\right)\left(2x+1\right)}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{\left(2x-1\right)}-\frac{1}{\left(2x+1\right)}\)
\(2A=1-\frac{1}{2x+1}=\frac{2x}{2x+1}\)
\(A=\frac{x}{2x+1}\)
Mà \(A=\frac{49}{99}\) \(\Leftrightarrow\frac{x}{2x+1}=\frac{49}{99}\Leftrightarrow x=49\)

\(a.\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right).\left(2x+1\right)}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2x+1}=\frac{49}{99}\)
\(\Rightarrow99x=49.\left(2x+1\right)\)
\(\Rightarrow99x=98x+49\)
\(\Rightarrow x=49\)
Vậy : \(x=49\)
\(b.\)
\(1-3+3^2-3^3+...+\left(-3^x\right)=\frac{1-9^{1006}}{4}\)
Đặt \(A=1-3+3^2-3^3+...+\left(-3^x\right)\)
\(\Rightarrow3A=3-3^2+3^3-3^4+...+\left(-3^{x+1}\right)\)
\(\Rightarrow3A+A=1+\left(-3^{x+1}\right)\)
\(\Rightarrow4A=1+\left(-3^{x+1}\right)\)
\(\Rightarrow A=\frac{1+\left(-3^{x+1}\right)}{4}\)
\(\Rightarrow\frac{1+\left(-3^{x+1}\right)}{4}=\frac{1-9^{1006}}{4}\)
\(\Rightarrow-3^{x+1}=-9^{1006}\)
\(\Rightarrow-3^{x+1}=-3^{2012}\)
\(\Rightarrow x+1=2012\)
\(\Rightarrow x=2012-1\)
\(\Rightarrow x=2011\)
Vậy : \(x=2011\)

\(\left|5x-3\right|-3x=12\)
\(\Leftrightarrow\left|5x-3\right|=12+3x\)
\(\Leftrightarrow\hept{\begin{cases}5x-3=12+3x\\-\left(5x-3\right)=12+3x\end{cases}\Rightarrow\hept{\begin{cases}5x-3x=12+3\\-5x+3=12+3x\end{cases}\Rightarrow}\hept{\begin{cases}2x=15\\-5x-3x=12-3\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\-8x=9\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{15}{2}\\x=\frac{-9}{8}\end{cases}}}\)

a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5

biết giải bài 2
x/12=y/14=x.y/12.24=98/288=49/144
=> x/12=49/144=> 49/12
=> y/14=49/144=> 343/72
mới lớp 2 thôi

Bài 1:
\(\left(\frac{1}{4.9}+\frac{1}{9.14}+\frac{1}{14.19}+...+\frac{1}{44.49}\right).\frac{1-3-5-...-49}{89}\)
\(=\frac{1}{5}\left(\frac{5}{4.9}+\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{44.49}\right).-\left(\frac{3+5+7+...+49-1}{89}\right)\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right).-\left(\frac{\left(49+3\right).24:2-1}{89}\right)\)(Do tổng có 24 số)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right).-\left(\frac{52.12-1}{89}\right)\)
\(=\frac{1}{5}.\frac{45}{196}.\left(-7\right)=-\frac{9}{28}\)
Bài 2:
a) Ta có:
\(|2x+3|=x+2\)
<=> x + 2 >=0 và: \(\orbr{\begin{cases}2x+3=x+2\\2x+3=-x-2\end{cases}}\)
<=> x >= -2 và \(\orbr{\begin{cases}2x-x=2-3\\2x+x=-2-3\end{cases}}\)
<=> x >= -2 và \(\orbr{\begin{cases}x=-1\left(n\right)\\x=-\frac{5}{3}\left(n\right)\end{cases}}\)( n là viết tắt của "nhận" nha bạn)
Vậy x ={-1 ; -5/3}
Xin lỗi vì tớ ko thể lồng dấu \(\hept{\begin{cases}\\\end{cases}}\) và dấu \(\orbr{\begin{cases}\\\end{cases}}\) được nếu lồng sẽ bị lỗi nên tớ dùng chữ "và" nha bạn
b)
A = \(|x-2006|+|2007-x|\)
Vì \(\hept{\begin{cases}|x-2006|\ge0\\|2007-x|\ge0\end{cases}}\)
Nến giá trị A sẽ nhỏ nhất khi \(\orbr{\begin{cases}x=2006\\x=2007\end{cases}}\)
=> Min A = 1 khi x ={2006 ; 2007}
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right)\left(2x+1\right)}=\frac{49}{99}\)
=>\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x-1\right)\left(2x+1\right)}\right)=\frac{49}{99}\)
=> \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}\right)=\frac{49}{99}\)
=> \(\frac{1}{2}\left(1-\frac{1}{2x+1}\right)=\frac{49}{99}\)
=> \(1-\frac{1}{2x+1}=\frac{98}{99}\)
=> \(\frac{1}{2x+1}=\frac{1}{99}\)
=>2x + 1 = 99
=> 2x = 98
=> x = 49
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x-1\right).\left(2x+1\right)}=\frac{49}{99}\)
=> \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x-1}-\frac{1}{2x+1}=\frac{49}{99}\)
=> \(1-\frac{1}{2x+1}=\frac{49}{99}\)
=> \(\frac{1}{2x+1}=1-\frac{49}{99}\)
=> \(\frac{1}{2x+1}=\frac{50}{99}\)
=> \(2x+1=\frac{99}{50}\)
=> \(2x=\frac{99}{50}-1\)
=> \(2x=\frac{49}{50}\)
=> \(x=\frac{49}{50}:2\)
=> \(x=\frac{49}{100}\)