Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\sqrt{\left(x-3\right)^2}=3-x\)
\(\Leftrightarrow\left|x-3\right|=3-x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=3-x\\x-3=x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+x=3+3\\x-x=-3+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=6\\0x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\0x=0\end{matrix}\right.\)
Vậy ...
b) \(\sqrt{25-20x+4x^2}+2x=5\)
\(\Leftrightarrow\sqrt{5^2-2.5.2x+\left(2x\right)^2}+2x=5\)
\(\Leftrightarrow\sqrt{\left(5-2x\right)^2}+2x=5\)
\(\Leftrightarrow\left|5-2x\right|+2x=5\)
\(\Leftrightarrow\left|5-2x\right|=5-2x\)
\(\Leftrightarrow\left[{}\begin{matrix}5-2x=5-2x\\5-2x=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x+2x=5-5\\-2x-2x=-5-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=0\\-4x=-10\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=0\\x=\dfrac{5}{2}\end{matrix}\right.\)
Vậy ...
c) \(\sqrt{1-12x+36x^2}=5\)
\(\Leftrightarrow\sqrt{\left(1-6x\right)^2}=5\)
\(\Leftrightarrow\left|1-6x\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}1-6x=5\\1-6x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=1-5\\6x=1-\left(-5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=-4\\6x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=1\end{matrix}\right.\)
Vậy ...
\(\sqrt{\left(x^2-4x+4\right)}-2=7\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=9\)
\(\Leftrightarrow\left|x-2\right|=9\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=9\\x-2=-9\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=11\\x=-7\end{array}\right.\)
Vậy \(x\in\left\{-7;11\right\}\)
\(\sqrt{\left(x^2-4x+4\right)}-2=7\)
<=> \(\sqrt{\left(x-2\right)^2}=9\)
<=> \(\left|x-2\right|=9\)
<=> x - 2 = 9 hoặc x - 2 = -9
<=> x = 11 hoặc x = -7
\(\sqrt{x^2-4x+4}-2=7\Leftrightarrow\sqrt{\left(x-2\right)^2}=9\Leftrightarrow\left|x-2\right|=9\Leftrightarrow\orbr{\begin{cases}x-2=9\\2-x=9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=11\\x=-7\end{cases}}\)
a,Để \(\sqrt{x^2-8x-9}\) có nghĩ thì
\(x^2-8x-9\ge0\)
\(\Leftrightarrow x^2+x-9x-9\ge0\)
\(\Leftrightarrow x\left(x+1\right)-9\left(x+1\right)\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x-9\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\ge-1\\x\ge9\end{cases}\Rightarrow}x\ge9\)
\(or\orbr{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x\le-1\\x\le9\end{cases}\Rightarrow}x\le-1\)
\(Để\sqrt{4-9x^2}\text{có nghĩa}\)
\(\Rightarrow4-9x^2\ge0\)
\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)\ge0\)
\(\Leftrightarrow-\frac{2}{3}\le x\le\frac{2}{3}\)