Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và x + y + z = 49
Ta có : \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{2}+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=49\cdot\frac{4}{19}=\frac{196}{19}\)
Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{\frac{4}{2}}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{169}{14}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)
\(b,\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và 2x + 3y - z = 186
Ta có : \(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\Leftrightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}\)
a) Phân số nào chung mẫu thì nhóm lại => kết quả
b) 3/7 chung, lấy ra ngoài. Đừng đổi hỗn số thành phân số, cứ để đó trừ.
c) 9 * (-1/3)^3 + 1/3 = 9* (1/3)^3 * (-1) + 1/3
Có 1/3 chung, đặt ra ngoài.
d) Tương tự câu b
Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.
Đó là số 88.
Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb
1.a) Sửa lại đề: \(\frac{11}{17}\)ở mẫu chuyển thành \(\frac{11}{7}\)
\(\frac{0,75+0,6-\frac{3}{7}-\frac{3}{13}}{2,75+2,2-\frac{11}{7}-\frac{11}{13}}=\frac{\frac{3}{4}+\frac{3}{5}-\frac{3}{7}-\frac{3}{13}}{\frac{11}{4}+\frac{11}{5}-\frac{11}{7}-\frac{11}{13}}\)\(=\frac{3\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\right)}{11\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\right)}=\frac{3}{11}\)
( vì \(\frac{1}{4}+\frac{1}{5}-\frac{1}{7}-\frac{1}{13}\ne0\))
2.a) \(\frac{3}{5}+\frac{3}{2}.x=\frac{-5}{7}\)\(\Leftrightarrow\frac{3}{2}.x=\frac{-5}{7}-\frac{3}{5}\)
\(\Leftrightarrow\frac{3}{2}.x=\frac{-46}{35}\)\(\Leftrightarrow x=\frac{-46}{35}:\frac{3}{2}\)\(\Leftrightarrow x=\frac{-92}{105}\)
Vậy \(x=\frac{-92}{105}\)
b) \(\left(4x-\frac{1}{3}\right).\left(\frac{3}{2}x+\frac{5}{6}\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}4x-\frac{1}{3}=0\\\frac{3}{2}x+\frac{5}{6}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=\frac{1}{3}\\\frac{3}{2}x=\frac{-5}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-5}{9}\end{cases}}\)
Vậy \(x=\frac{-5}{9}\)hoặc \(x=\frac{1}{12}\)
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
\(\Leftrightarrow x:\frac{1}{45}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}:\frac{1}{45}=\frac{45}{2}\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
c) \(\frac{4-3x}{2x+5}=0\Leftrightarrow4-3x=0\)
\(\Leftrightarrow3x=4\Rightarrow x=\frac{4}{3}\)
d) \(\left(x-2\right).\left(x+\frac{2}{3}\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\\x+\frac{3}{2}>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\\x+\frac{3}{2}< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>2\\x>-\frac{3}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< 2\\x< -\frac{3}{2}\end{matrix}\right.\end{matrix}\right.\)
Bài 2:
a) \(x:\left(\frac{2}{9}-\frac{1}{5}\right)=\frac{8}{16}\)
=> \(x:\frac{1}{45}=\frac{1}{2}\)
=> \(x=\frac{1}{2}.\frac{1}{45}\)
=> \(x=\frac{1}{90}\)
Vậy \(x=\frac{1}{90}.\)
b) \(\left(2x-1\right).\left(2x+3\right)=0\)
=> \(\left\{{}\begin{matrix}2x-1=0\\2x+3=0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}2x=0+1=1\\2x=0-3=-3\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x=1:2\\x=\left(-3\right):2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{2};-\frac{3}{2}\right\}.\)
Mình chỉ làm được thế thôi nhé, mong bạn thông cảm.
Chúc bạn học tốt!
1)
a, \(\frac{x-7}{6}\) = \(\frac{2^3}{16}\)
⇒ 16 (x-7) = 6.23
⇒ 16x - 112 = 48
⇒ x = \(\frac{48+112}{16}\) = 10
Vậy: x = 10
b, (-0,75x) : 3 = \(\left(-2\frac{1}{2}\right)\) : 0,125
⇒ -0,25x = -2,5 : 0,125 =-20
⇒ x = \(\frac{-20}{-0,25}\) = 80
Vậy: x = 80
d, |2,6−x|=1,5
Hoặc 2,6−x=1,5
⇒ x = 2,6 -1,5 = 1,1
Hoặc 2,6−x=-1,5
⇒ x = 2,6 - (-1,5) = 4,1
Vậy: x ∈ {1,1; 4,1}
e, |x|=2019 và x > 0
Vì x > 0 nên x = - 2019
2)
a, \(\frac{x}{4}\) = \(\frac{y}{9}\) và x - y = 90 (ko có z trong phép tính, chắc bạn nhầm lẫn)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}\) = \(\frac{y}{9}\) = \(\frac{x-y}{4-9}\) =\(\frac{90}{-5}\) = -18
+ \(\frac{x}{4}\) = -18 ⇒ x = -18 . 4 = -72
+ \(\frac{y}{9}\) = -18 ⇒ y = -18 . 9 = -162
Vậy: x = -72, y = -162
Lát mình làm tiếp nha mn