Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(x4+3)-(9)=17
⇒2x4+6+9=17
⇒2x4+15=17
⇒ 2x4=2
⇒ x4=1
⇒ x=\(\pm1\)
b) 5x2.x+1-3.42=-47
⇒5x3+1-48=-47
⇒5x3-47=-47
⇒5x3=0
⇒x3=0
⇒x=0
a) \(2\left(x^4+3\right)-\left(-9\right)=17\)
\(2x^4+6+9=17\)
\(2x^4=2\)
\(x^4=1\)
⇒ \(x=1\)
Bài 1: Ta có 200920 = (20092)10 = (2009.2009)10
2009200910 = (10001.2009)10
Mà 2009 < 10001 ➩ (2009.2009)10 < (10001.2009)10
Vậy 200920 < 2009200910
10:
Vì n là số lẻ nên n=2k-1
Số số hạng là (2k-1-1):2+1=k(số)
Tổng là (2k-1+1)*k/2=2k*k/2=k^2 là số chính phương
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc {1;5;13;65}
=>\(n\in\left\{0;2;-2;2\sqrt{3};-2\sqrt{3};8;-8\right\}\)
ck giúp mình với
Bài toán 3
a. 25 - y^2 = 8(x - 2009)
Ta có thể viết lại như sau:
y^2 - 8(x - 2009) + 25 = 0Đây là phương trình bậc hai với hệ số thực.
Ta có thể giải phương trình này như sau:
y = (8x - 1607 ± √(8x - 1607)^2 - 4 * 1 * 25) / 2 y = (4x - 803 ± √(4x - 803)^2 - 200) / 2 y = 2x - 401 ± √(2x - 401)^2 - 100Ta thấy rằng nghiệm của phương trình này là xấp xỉ 2009 và -2009.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = 2009 và y = 0.
b. x^3 y = x y^3 + 1997
Ta có thể viết lại như sau:
x^3 y - x y^3 = 1997 x y (x^2 - y^2) = 1997 x y (x - y)(x + y) = 1997Ta có thể thấy rằng x và y phải có giá trị đối nhau.
Vậy, nghiệm của phương trình này là x = y = 1997/2 = 998,5.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = y = 998.
c. x + y + 9 = xy - 7
Ta có thể viết lại như sau:
x - xy + y + 16 = 0Đây là phương trình bậc hai với hệ số thực.
Ta có thể giải phương trình này như sau:
x = (xy - 16 ± √(xy - 16)^2 - 4 * 1 * 16) / 2 x = (y - 4 ± √(y - 4)^2 - 64) / 2 x = y - 4 ± √(y - 4)^2 - 32Ta thấy rằng nghiệm của phương trình này là xấp xỉ 8 và -8.
Tuy nhiên, trong bài toán, x và y là số tự nhiên.
Vậy, nghiệm của phương trình này là x = 8 và y = 12.
Bài toán 4
Ta có thể chứng minh bằng quy nạp.
Cơ sở
Khi n = 2, ta có:
x1.x2 + x2.x3 = 0Vậy, x1.x2 + x2.x3 + ...+ xn.x1 = 0 khi n = 2.
Bước đệm
Giả sử rằng khi n = k, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = 0Bước kết luận
Xét số tự nhiên n = k + 1.
Ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = x1.x2 + x2.x3 + ...+ xn.x1 + xn.x1Theo giả thuyết, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 = 0Vậy, xn.x1 = -(x1.x2 + x2.x3 + ...+ xn.x1) = 0.
Như vậy, ta có:
x1.x2 + x2.x3 + ...+ xn.x1 shareb: 1/2x-4=0
=>1/2x=4
hay x=8
a: x+7=0
=>x=-7
e: 4x2-81=0
=>(2x-9)(2x+9)=0
=>x=9/2 hoặc x=-9/2
g: x2-9x=0
=>x(x-9)=0
=>x=0 hoặc x=9
a: x+7=0
nên x=-7
b: x-4=0
nên x=4
c: -8x+20=0
=>-8x=-20
hay x=5/2
d: x2-100=0
=>(x-10)(x+10)=0
=>x=10 hoặc x=-10
b: \(\Leftrightarrow x^2+x+9+x^2+x+7=16\)
=>2x2+2x=0
=>2x(x+1)=0
=>x=0 hoặc x=-1