K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

\(4x^2-4x=8\)

\(\Leftrightarrow4x^2-4x-8=8-8\)

\(\Leftrightarrow4x^2-4x-8=0\)

\(\Leftrightarrow4\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

Vậy: x = -1 hoặc x = 2

20 tháng 6 2019

4x2 - 4x = 8

=> 4x2 - 4x -8 = 0

=> 4( x2 - 2x -2 ) = 0

=> 4 ( x- x - x - 2 ) = 0

=> 4 ( x +1) ( x - 2 ) = 0

=> x + 1 = 0        hoặc      x -2 = 0 

       x = -1           hoặc        x = 2

Bài 1

a, x2 + 4x + 3

24 tháng 8 2019

a) \(x^2+4x+3\)

\(=x^2+3x+x+3\)

\(=x\left(x+3\right)+\left(x+3\right)\)

\(=\left(x+1\right)\left(x+3\right)\)

3 tháng 8 2019

e lớp 6 a ơi

sory

3 tháng 8 2019

a) \(4x^2-y^2+4x+1\)

\(=\left(4x^2+4x+1\right)-y^2\)

\(=\left(2x+1\right)^2-y\)

\(=\left(2x+y+1\right)\left(2x-y-1\right)\)

28 tháng 7 2019

\(a,35x^2y-14xy+21xy^2=7xy\left(5x+3y-2\right)\)

\(b,x^3-4x^2+4x=x\left(x^2-4x+4\right)=x\left(x-2\right)^2\)

\(c,x^2-7x+xy-7y=x\left(x-7\right)+y\left(x-7\right)=\left(x-7\right)\left(x+y\right)\)

\(d,x^2-y^2-10x+25=\left(x-5\right)^2-y^2=\left(x-y-5\right)\left(x+y-5\right)\)

\(e,x^3y+2x^2y^2-xyz^2+xy^3=xy\left(x^2+2xy+y^2-z^2\right)\)

\(=xy\left[\left(x+y\right)^2-z^2\right]=xy\left(x+y-z\right)\left(x+y+z\right)\)

10 tháng 3 2020

tải photomath về bn

10 tháng 3 2020

thank you nha 

9 tháng 3 2020

Tui chưa nháp nhưng câu 1 thử nhân hết ra coi triệt tiêu bớt đc ko, mà chắc chắn là nhân ra sẽ mất cái 27x^3 rồi nên thành pt bậc 2 giải vô tư nhé, câu 2 tách hết ra cx lm đc vì nó là pt bậc 2 

câu 3 tách thành (x+3)(x^2-7x+9)=0 có pt bậc 2 nên ok r

9 tháng 3 2020

(3x - 2)(9x2 + 6x + 4) - (3x - 1)(9x2 - 3x + 1) = x - 4

<=> 27x3 - 8 - 27x3 + 1 =  x - 4

<=> x - 4 = -7

<=> x = -3

Vậy S = {-3}

9(2x + 1) = 4(x - 5)2

<=> 4(x2 - 10x + 25) - 18x - 9 = 0

<=>4x2 - 40x + 100 - 18x - 9 = 0

<=> 4x2 - 58x + 91 = 0

<=> (4x2 - 58x + 210,25) - 119,25 = 0

<=> (2x - 14,5)= 119,25

<=> \(\orbr{\begin{cases}2x-14,5=\sqrt{119,25}\\2x-14,5=-\sqrt{119,25}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)

Vậy S = {...}

x3 - 4x2  - 12x + 27 = 0

<=> (x3 + 3x2) - (7x2 + 21x) + (9x + 27) = 0

<=> x2(x + 3) - 7x(x + 3) + 9(x + 3) = 0

<=> (x2 - 7x + 9)(x + 3) = 0

<=> \(\orbr{\begin{cases}x-7x+9=0\\x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x^2-7x+12,25\right)-3,25=0\\x=-3\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x-3,5\right)^2=3,25\\x=-3\end{cases}}\)

<=> \(\orbr{\begin{cases}x-3,5=\sqrt{3,25}\\x-3,5=-\sqrt{3,25}\end{cases}}\)

hoặc x = -3

<=>  \(\orbr{\begin{cases}x=\frac{7+\sqrt{13}}{2}\\x=\frac{7-\sqrt{13}}{2}\end{cases}}\)

hoặc x = -3

Vậy S = {...}