K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2021

       4x+1- 4x = 48

<=> 4x . 4 - 4x = 48

<=> 4x . (4-1) = 48

<=>  4x.3 = 48

<=> 4x = 16

<=> 4x = 42

<=> x = 2

Vậy S= 2

29 tháng 1 2021

 

3 tháng 2 2018

x4+4x3-4x2-48x-48=0

=> x4+4(x3-x2) - 48x = 48

=> x4 + 4[x2(x-1)] - 48x = 48 

3 tháng 2 2018

     \(x^4+4x^3-4x^2-48x-48=0\)

\(\Leftrightarrow\)\(x^4-2x^3-4x^2+6x^3-12x^2-24x+12x^2-24x-48=0\)

\(\Leftrightarrow\)\(x^2\left(x^2-2x-4\right)+6x\left(x^2-2x-4\right)+12\left(x^2-2x-4\right)=0\)

\(\Leftrightarrow\)\(\left(x^2-2x-4\right)\left(x^2+6x+12\right)\)

\(\Leftrightarrow\)\(\left[\left(x-1\right)^2-5\right]\left(x^2+6x+12\right)=0\)

\(\Leftrightarrow\)\(\left(x-1-\sqrt{5}\right)\left(x-1+\sqrt{5}\right)\left(x^2+6x+12\right)=0\)

Ta có:   \(x^2+6x+12=\left(x+3\right)^2+3>0\)

\(\Rightarrow\)\(\orbr{\begin{cases}x-1-\sqrt{5}=0\\x-1+\sqrt{5}=0\end{cases}}\)      

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1+\sqrt{5}\\x=1-\sqrt{5}\end{cases}}\)

Vậy...

4 tháng 8 2016

a)\(x^2+10x=24\)

\(\Leftrightarrow x^2+10x-24=0\)

\(\Leftrightarrow x^2-2x+12x-24=0\)

\(\Leftrightarrow x\left(x-2\right)+12\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+12\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x+12=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-12\end{array}\right.\)

b)\(4x^2+4x=24\)

\(\Leftrightarrow4x^2+4x-24=0\)

\(\Leftrightarrow4\left(x^2+x-6\right)=0\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow x^2+3x-2x-6=0\)

\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)

c)\(4x^2-4x=48\)

\(\Leftrightarrow4x^2-4x-48=0\)

\(\Leftrightarrow4\left(x^2-x-12\right)=0\)

\(\Leftrightarrow x^2-x-12=0\)

\(\Leftrightarrow x^2+3x-4x-12=0\)

\(\Leftrightarrow x\left(x+3\right)-4\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\x-4=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=4\end{array}\right.\)

4 tháng 8 2016

\(a,x^2+10x=24\)
\(\Leftrightarrow x^2+10x-24=0\)
\(\Leftrightarrow x^2-2x+12x-24=0\)
\(\Leftrightarrow x\left(x-2\right)+12\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x+12=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-12\end{array}\right.\)
\(\text{Vậy x=2 hoặc x=-12 }\)
\(b,4x^2+4x=24\)
\(\Leftrightarrow4x^2+4x-24=0\)
\(\Leftrightarrow4x^2-8x+12x-24=0\)
\(=4x\left(x-2\right)+12\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x+12\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\4x+12=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)
Vậy hoặc \(\text{Vậy x=2 hoặc x=-3 }\)
\(c,4x^2-4x=48\)
\(\Leftrightarrow4x^2-4x-48=0\)
\(\Leftrightarrow\left[\left(2x\right)^2-2.2x+1^2\right]-1^2-48=0\)
\(\Leftrightarrow\left(2x-1\right)^2-49=0\)
\(\Leftrightarrow\left(2x-1\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-1-7\right)\left(2x-1+7\right)=0\)
\(\Leftrightarrow\left(2x-8\right)\left(2x+6\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-8=0\\2x+6=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=-3\end{array}\right.\)
\(\text{Vậy x=4 hoặc x=-3 }\)

9 tháng 6 2019

\(32.\left(x-1\right)+4.\left(8x-2\right)=48\)

=>\(32x-32+32x-8=48\)

=>\(\left(32x+32x\right)-\left(32+8\right)=48\)

=>\(64x-40=48\)

=>\(64x=48+40=88\)

=>\(x=88:64\)

=>\(x=\frac{11}{8}\)

Vậy x∈{\(\frac{11}{8}\)}

9 tháng 6 2019

thanks!

1 tháng 9 2018

(4x-3).(4x+2) + (4x+5).(1-4x) = 2.52

16x2 + 8x - 12x - 6 + 4x - 16x2 + 5 - 20x = 50

(16x2 - 16x2) + ( 8x-12x+4x-20x) - (6-5) = 50

-20x = 50

x = -5/2

30 tháng 10 2015

4x(x-1)+1=25

4x(x-1)=24

x(x-1)=6

=>x=3

21 tháng 7 2018

BÀI 1:

Ta có:   \(VT=\left(7x+1\right)^2-\left(x+7\right)^2\)

                    \(=\left(7x+1+x+7\right)\left(7x+1-x-7\right)\)

                    \(=\left(8x+8\right)\left(6x-6\right)\)

                   \(=8\left(x+1\right).6\left(x-1\right)\)

                  \(=48\left(x^2-1\right)=VP\)  (đpcm)

Bài 2:

         \(16x^2-\left(4x-5\right)^2=15\)

\(\Leftrightarrow\)\(16x^2-16x^2+40x-25=15\)

\(\Leftrightarrow\)\(40x=40\)

\(\Leftrightarrow\)\(x=1\)

Vậy...

Bài 3:

\(A=x^2+2x+3=\left(x+1\right)^2+2\ge2\)

Vậy MIN A = 2  khi  x = -1

10 tháng 8 2020

Bài làm:

Ta có: \(\left(4x-1\right)^2-\left(4x+1\right)\left(x-2\right)=12\)

\(\Leftrightarrow16x^2-8x+1-4x^2+7x+2-12=0\)

\(\Leftrightarrow12x^2-x-9=0\)

\(\Leftrightarrow12\left(x^2-\frac{1}{12}x+\frac{1}{576}\right)-\frac{433}{48}=0\)

\(\Leftrightarrow\left[2\sqrt{3}\left(x-\frac{1}{24}\right)\right]^2-\left(\frac{\sqrt{433}}{\sqrt{48}}\right)^2=0\)

\(\Leftrightarrow\left[2\sqrt{3}\left(x-\frac{1}{24}\right)-\sqrt{\frac{433}{48}}\right]\left[2\sqrt{3}\left(x-\frac{1}{24}\right)+\sqrt{\frac{433}{48}}\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}2\sqrt{3}\left(x-\frac{1}{24}\right)=\sqrt{\frac{433}{48}}\\2\sqrt{3}\left(x-\frac{1}{24}\right)=-\sqrt{\frac{433}{48}}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{24}=\frac{\sqrt{433}}{24}\\x-\frac{1}{24}=\frac{-\sqrt{433}}{24}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{433}+1}{24}\\x=\frac{1-\sqrt{433}}{24}\end{cases}}\)

Vậy tập nghiệm của PT \(S=\left\{\frac{1-\sqrt{433}}{24};\frac{\sqrt{433}+1}{24}\right\}\)

10 tháng 8 2020

\(\left(4x-1\right)^2-\left(4x+1\right)\left(x-2\right)=12\) 

\(\Leftrightarrow\left(4x-1\right)\left(4x-1-x+2\right)=12\)

\(\Leftrightarrow\left(4x-1\right)\left(3x+1\right)=12\)

Rồi bạn tự tính tiếp nhớ :3

Học tốt 

\(\left(4x-1\right)^2-\left(4x+1\right)\left(x-2\right)=12\)

\(\Leftrightarrow16x^2-8x+1-4x^2+8x-x+2=12\)

\(\Leftrightarrow12x^2-x-9=0\)( vô nghiệm )