Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (3x + 4)2 - (3x - 1).(3x + 1) = 49
=> (3x + 4).3x + (3x + 4).4 - (9x2 - 1) = 49
=> 9x2 + 12x + 12x + 16 - 9x2 + 1 = 49
=> 24x + 17 = 49
=> 24x = 49 - 17
=> 24x = 32
=> \(x=\frac{32}{24}=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)
b) (2x + 1)2 - (x - 1)2 = 0
=> (2x + 1 - x + 1).(2x + 1 + x - 1) = 0
=> (x + 2).3x = 0
=> (x + 2).x = 0
\(\Rightarrow\left[\begin{array}{nghiempt}x+2=0\\x=0\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x=-2\\x=0\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=-2\\x=0\end{array}\right.\)
không ai trả lời
a,\(2\left(3x-1\right)-5\left(x-3\right)-9\left(2x-4\right)=24\)
\(< =>6x-2-5x+15-18x+36=24\)
\(< =>-29x+49=24< =>29x=25< =>x=\frac{25}{29}\)
b,\(2x^2+4\left(x^2-1\right)=2x\left(3x+1\right)\)
\(< =>2x^2+4x^2-4=6x^2+2x\)
\(< =>2x=-4< =>x=-\frac{4}{2}=-2\)
c, \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=4\)
\(< =>10x-6x^2+6x^2-10x-3x+21=4\)
\(< =>-3x=4-21=-17< =>x=\frac{17}{3}\)
d, \(5x\left(x+1\right)-4x\left(x+2\right)=1-x\)
\(< =>5x^2+5x-4x^2-8x=1-x\)
\(< =>x^2-3x+x-1=0\)
\(< =>x^2-2x-1=0\)
\(< =>\left(x-1\right)^2=2\)
\(< =>\orbr{\begin{cases}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)
x2+3x2+3x+1-3x2-3x = 0
=> x3+1 = 0
=> x3 = 0-1
=> x3 = -1
=> x = -1
\(x^3+3x^2+3x+1-3x^2-3x=0\)0
\(\Leftrightarrow x^3+\left(3x^2-3x^2\right)+\left(3x-3x\right)+1=0\)
\(\Leftrightarrow x^3+1=0\)
\(\Leftrightarrow x^3=1\)
\(\Leftrightarrow x^3=1^3\)
\(\Rightarrow x=1\)
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
\(5x-3x^2+3x^3-x^4=\left(x+1\right)^2\)
\(\Leftrightarrow5x-3x^2+3x^3-x^4=x^2+2x+1\)
\(\Leftrightarrow5x-3x^2+3x^3-x^4-1=x^2+2x+1-1\)
\(\Leftrightarrow5x-3x^2+3x^3-x^4-1=x^2+2x\)
\(\Leftrightarrow5x-3x^2+3x^3-x^4-1-2x=x^2+2x-2x\)
\(\Leftrightarrow-x^4+3x^3-3x^2+3x-1=x^2\)
\(\Leftrightarrow-x^4+3x^3-3x^2-1-x^2=x^2-x^2\)
\(\Leftrightarrow-x^4+3x^3-4x^2+3x-1=0\)
\(\Leftrightarrow-\left(x-1\right)^2\left(x^2-x+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=1\\x=\frac{1}{2}+i\frac{\sqrt{3}}{2}\\x=\frac{1}{2}-i\frac{\sqrt{3}}{2}\end{cases}}\)
Mình ko chắc :(
Tl
x=-13/9
HT