Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(|5x-3|=|7-x|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-3=7-x\\5x-3=x-7\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x=10\\4x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)
Vậy...
2) \(2.|3x-1|-3x=7\)
\(\Leftrightarrow2.|3x-1|=7+3x\)
\(\Leftrightarrow\orbr{\begin{cases}2.\left(3x-1\right)=7+3x\\2.\left(3x-1\right)=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}6x-2=7+3x\\6x-2=-7-3x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=9\\9x=-5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=\frac{-5}{9}\end{cases}}\)
Vậy...
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có : |x - 1,5| + |2,5 - x| \(\ge\left|x-1,5+2,5-x\right|\)
<=> |x - 1,5| + |2,5 - x| \(\ge\left|1\right|\)
=> |x - 1,5| + |2,5 - x| \(\ge1\)
Vậy GTNN của biểu thức là : 1
Khi 1,5 \(\le x\le2,5\)
Vậy nên đề sai nhá
c) \(\left|x-7\right|=1-2x\)
khi \(x\ge\frac{1}{2}\), biểu thức có dạng:
\(\orbr{\begin{cases}x-7=1-2x\\x-7=2x-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=8\\-x=6\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=-6\end{cases}}}\)
8/3 (nhận); -6 (loại)
vậy x=8/3
a) \(|2x-2,5|=|x-1,7|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-2,5=x-1,7\\2x-2,5=1,7-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-x=-1,7+2,5\\2x+x=1,7+2,5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{4}{5}\\x=\frac{7}{5}\end{cases}}\)
Vậy ...
b) \(|x+1|-|\frac{1}{2}x-3|=0\)
\(\Leftrightarrow|x+1|=|\frac{1}{2}x-3|\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=\frac{1}{2}x-3\\x+1=3-\frac{1}{2}x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{1}{2}x=-3-1\\x+\frac{1}{2}x=3-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-8\\x=\frac{4}{3}\end{cases}}\)
Vậy ...
\(\Leftrightarrow x^2+2x-3,5=0\\ \Leftrightarrow2x^2+4x-7=0\\ \Leftrightarrow2\left(x^2+2x+1\right)-9=0\\ \Leftrightarrow2\left[\left(x+1\right)^2-\dfrac{9}{2}\right]=0\\ \Leftrightarrow\left(x+1-\dfrac{3}{\sqrt{2}}\right)\left(x+1+\dfrac{3}{\sqrt{2}}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{\sqrt{2}}-1=\dfrac{3-\sqrt{2}}{\sqrt{2}}\\x=\dfrac{3}{\sqrt{2}}+1=\dfrac{3+\sqrt{2}}{\sqrt{2}}\end{matrix}\right.\)
cảm ơn