Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x+\dfrac{1}{7}=\dfrac{1}{y}\Rightarrow14xy+y=7\Leftrightarrow y\left(14x+1\right)=7\)
\(\Rightarrow y;14x+1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
14x+1 | 1 | -1 | 7 | -7 |
y | 7 | -7 | 1 | -1 |
x | 0 | loại | loại | loại |
Bài 1:
Giải:
Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)
\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)
\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)
+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)
+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)
+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(6,2;9,8;8,2\right)\)
Có: \(f\left(x\right)=ax^2+bx+c=5\) với mọi x
=> \(f\left(2\right)=4a+2b+c=5\)
=> \(4a+2b+c-5=5-5=0\)
(2x-3/7)(2x^2+18)=0 => 2x-3/7=0 hoặc 2x^2+18=0 => 2x=3/7 hoặc 2x^2=-18(loại vì 2x^2 >= 0)
=>x=3/7 / 2=> x=3/7*1/2=>x=3/14
Vậy : x=3/14
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}\) áp dụng... ta đc:
\(\dfrac{x}{1}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{2x}{2}=\dfrac{3y}{18}=\dfrac{4z}{12}=\dfrac{2x-3y+4z}{2-18+12}=\dfrac{24}{-4}=-6\\ x=-6\\ y=-36\\ z=-18\)
Tham khảo:Câu hỏi của Ngô Thái Dương - Toán lớp 7 - Học trực tuyến OLM
Ta có: \(\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\)
\(\left(y+0.4\right)^{100}\ge0\forall y\)
\(\left(z-3\right)^{678}\ge0\forall z\)
Do đó: \(\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0.4\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)
Dấu '=' xảy ra khi
\(\left\{{}\begin{matrix}x-\dfrac{1}{5}=0\\y+0.4=0\\z-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{2}{5}\\z=3\end{matrix}\right.\)
Vậy: (x,y,z)=\(\left(\dfrac{1}{5};-\dfrac{2}{5};3\right)\)
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\) và \(x-3y=20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}=\dfrac{3y}{9}=\dfrac{z}{2}=\dfrac{x-3y}{5-9}=\dfrac{20}{-4}=-5\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{5}=-5< =>x=-25\\\dfrac{y}{3}=-5< =>y=-15\\\dfrac{z}{2}=-5< =>z=-10\end{matrix}\right.\)
Vậy ....
suy ra (2x-3)^x+3-(2x-3)^x+1=0
[(2x-3)x+2.(2x-3)x+1]-(2x-3)x+1.1=0
(2x-3)x+1.[(2x-3)x+2-1]=0
suy ra (2x-3)x+1=0
2x-3=0
2x=3 suy ra x=1,5
Tiếp nè
(2x-3)x+2-1=0
(2x-3)x+2=1
2x-3=1
2x=4 suy ra x=2