![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 401 người nhận rồi
OK
\(\left(3x+1\right)\left(x-2\right)< 0.\)
\(\Leftrightarrow\orbr{\begin{cases}3x+1>0,x-2< 0\\3x+1< 0,x-2>0\end{cases}}\)
\(Th1\hept{\begin{cases}3x+1>0\\x-2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}3x>-1\\x< 2\end{cases}\Leftrightarrow\hept{\begin{cases}x>\frac{-1}{3}\\x< 2\end{cases}\Rightarrow}}}\frac{-1}{x}< x< 2\)
\(Th2:\hept{\begin{cases}3x+1< 0\\x-2>0\end{cases}\Leftrightarrow\hept{\begin{cases}3x< -1\\x>2\end{cases}\Leftrightarrow\hept{\begin{cases}x< \frac{-1}{2}\\x>2\end{cases}\left(loại\right)}}}\)
Vậy \(\frac{-1}{x}< x< 2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x-\frac{1}{2}\right)\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\2x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)
b) \(\left(x-\frac{1}{2}\right)\left(x+2\right)< 0\)
TH1: \(\hept{\begin{cases}x-\frac{1}{2}< 0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x< \frac{1}{2}\\x< -2\end{cases}}}\)
TH2: \(\hept{\begin{cases}x-\frac{1}{2}>0\\x+2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>\frac{1}{2}\\x< -2\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,Vì: \(\left(x-1\right)^2\ge0\forall x\)
\(\left(2y-5\right)^4\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-5\right)^2\ge0\forall x,y\)
Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(2y-5\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{5}{2}\end{cases}}}\)
=.= hok tốt!!
b, Vì: \(\left(2x+3\right)^2\ge0\forall x\)
\(\left(x+2y-3\right)^2\ge0\forall x,y\)
\(\Rightarrow\left(2x+3\right)^2+\left(x+2y-3\right)^2\ge0\forall x,y\)
Mà: \(\left(2x+3\right)^2+\left(x+2y-3\right)^2< 0\)
=> Ko có giá trị của x , y thỏa mãn
=.= hok tốt!!