Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7^{x+2}+7^{x+1}+7x}{57}=\frac{5^{2x}+5^{2x+1}+5^{2x+3}}{131}\)
\(\Rightarrow\frac{7x\left(7^2+7^1+1\right)}{57}=\frac{5^{2x}\left(1+5^1+5^3\right)}{131}\)
\(\Rightarrow\frac{7x\left(49+7+1\right)}{57}=\frac{5^{2x}\left(1+5+125\right)}{131}\)
\(\Rightarrow\frac{7x.57}{57}=\frac{5^{2x}.131}{131}\)
\(\Rightarrow7x=25x\)
\(\Rightarrow x=0\)
\(\left(4x-3\right)^4=\left(4x-3\right)^2\)
\(\Rightarrow\left(4x-3\right)^4-\left(4x-3\right)^2=0\)
\(\Rightarrow\left(4x-3\right)^2\left[\left(4x-3\right)^2-1\right]=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(4x-3\right)^2=0\\\left(4x-3\right)^2=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}4x-3=0\\4x-3=-1\\4x-3=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\x=\frac{1}{2}\\x=1\end{cases}}\)
a) Ta có : \(\left|3x+4\right|=2\left|2x-9\right|\)
=> \(\orbr{\begin{cases}3x+4=2\left(-2x+9\right)\\3x+4=2\left(2x-9\right)\end{cases}}\Rightarrow\orbr{\begin{cases}3x+4=-4x+18\\3x+4=4x-18\end{cases}}\Rightarrow\orbr{\begin{cases}7x=14\\-x=-22\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=22\end{cases}}\)
=> \(x\in\left\{2;22\right\}\)
b) Ta có : \(\left|10x+7\right|< 37\)
=> -37 < 10x + 7 < 37
=> -44 < 10x < 30
=> -4,4 < x < 3
Vậy -4,4 < x < 3
c) |3 - 8x| \(\le\)19
=> \(-19\le3-8x\le19\)
=> \(\hept{\begin{cases}3-8x\ge-19\\3-8x\le19\end{cases}}\Rightarrow\hept{\begin{cases}22\ge8x\\-16\le8x\end{cases}}\Rightarrow\hept{\begin{cases}x\le\frac{11}{4}\\x\ge-2\end{cases}}\Rightarrow-2\le x\le\frac{11}{4}\)
d) Ta có |x + 3| - 2x = |x - 4| (1)
Nếu x < -3
=> |x + 3| = -(x + 3) = -x - 3
=> |x - 4| = -(x - 4) = -x + 4
Khi đó (1) <=> -x - 3 - 2x = - x + 4
=> -3x - 3 = - x + 4
=> -2x = 7
=> x = - 3,5 (tm)
Nếu \(-3\le x\le4\)
=> |x + 3| = x + 3
=> |x - 4| = -(x - 4) = -x + 4
Khi đó (1) <=> x + 3 - 2x = -x + 4
=> -x + 3 = -x + 4
=> 0x = 1 (loại)
Nếu x > 4
=> |x + 3| = x + 3
=> |x - 4| = x + 4
Khi đó (1) <=> x + 3 - 2x = x - 4
=> -x + 3 = x - 4
=> -2x = -7
=> x = 3,5 (loại)
Vậy x = -3,5
\(\frac{x+1}{x-2}=\frac{3}{4}\) ( \(ĐKXĐ\) : \(x\ne2\) )
\(\Leftrightarrow\left(x+1\right).4=\left(x-2\right).3\)
\(\Leftrightarrow4x+4=3x-6\)
\(\Leftrightarrow4x-3x=-6-4\)
\(\Leftrightarrow x=-10\)
b ) \(\frac{2x-3}{x+1}=\frac{4}{7}\left(ĐKXĐ:x\ne1\right)\)
\(\Leftrightarrow7\left(2x-3\right)=4\left(x+1\right)\)
\(\Leftrightarrow14x-21=4x+4\)
\(\Leftrightarrow10x=25\)
\(\Leftrightarrow x=\frac{5}{2}\)
a)\(\left(\frac{4}{5}\right)^{2x+7}=\left(\frac{4}{5}\right)^4\)
=> 2x + 7 = 4
2x = 4 - 7
2x = -3
x = -3 : 2
x = -1,5
Vậy x = -1,5
a. 0,34-2x=1,2
=> 2x=0,34-1,2
=> 2x=-0,86
=> x=-0,86:2
=> x=-0,43
b. \(\frac{3}{2x+1}=\frac{4}{7}\)
=> \(2x+1=\frac{3.7}{4}\)
=> 2x+1=5,25
=> 2x=4,25
=> x=4,25:2
=> x=2,125
c. \(\frac{x-3}{2}=\frac{5-2x}{3}\)
=> (x-3).3=(5-2x).2
=> 3x-9=10-4x
=> 3x+4x=10+9
=> 7x=19
=> x=19:7
=> x=19/7
1.\(\frac{x+1}{x-2}=\frac{3}{4}\)
\(\Leftrightarrow\left(x+1\right).4=\left(x-2\right).3\)
\(\Leftrightarrow4x+4=3x-6\)
<=>4x-3x=-6-4
<=>x=-10
2.\(\frac{52}{2x-1}=\frac{13}{30}\)
<=>52.30=(2x-1).13
<=>1560=26x-13
<=>-26x=-13-1560
<=>-26x=-1573
<=>x=60,5
3.\(\frac{2x-3}{x+1}=\frac{4}{7}\)
<=>(2x-3).7=(x+1).4
<=>14x-21=4x+4
<=>14x-4x=4+21
<=>10x=25
<=>x=2,5
4.\(\frac{2x+3}{42}=\frac{3x-1}{32}\)
<=>(2x+3).32=42(3x-1)
<=>64x+96=126x-42
<=>64x-126x=-42-96
<=>-62x=-138
<=>x=69/31
a) \(\left|2x-3\right|-\dfrac{5}{2}=\dfrac{1}{3}\)
\(\left|2x-3\right|=\dfrac{1}{3}+\dfrac{5}{2}=\dfrac{2}{6}+\dfrac{15}{6}\)
\(\left|2x-3\right|=\dfrac{17}{6}\)
\(+)2x-3=\dfrac{17}{6}\Rightarrow2x=\dfrac{35}{6}\Rightarrow x=\dfrac{35}{12}\)
\(+)2x-3=\dfrac{-17}{6}\Rightarrow2x=\dfrac{1}{6}\Rightarrow x=\dfrac{1}{12}\)
vậy...
\(\left|x-1\right|+3x=1\\ \Rightarrow\left|x-1\right|=1-3x\\ \Rightarrow\left\{{}\begin{matrix}x-1=1-3x\\x-1=-1+3x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4x=2\\-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)
Dấu ngoặc vuông nhé
thánh bấm nhầm
Ta có : |2x - 3| + |2x + 4| = |3 - 2x| + |2x + 4| \(\ge\left|3-2x+2x+4\right|=\left|7\right|=7\)
Dấu "=" xảy ra <=> \(\left(3-2x\right)\left(2x+4\right)\ge0\)
Xét các trường hợp
TH1 : \(\hept{\begin{cases}3-2x\ge0\\2x+4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge-2\end{cases}}\Rightarrow-2\le x\le\frac{3}{2}\)
TH2 : \(\hept{\begin{cases}3-2x\le0\\2x+4\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le-2\end{cases}}\Rightarrow x\in\varnothing\)
Vậy \(-2\le x\le\frac{3}{2}\)là giá trị cần tìm
cách dăng bài trên máy tính là gì vậy ?