Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(x:27=3,6\)
\(\Rightarrow x=97,2\)
b/\(\dfrac{2x+1}{-27}=\dfrac{-3}{2x+1}\)
\(\Rightarrow\left(2x+1\right)^2=81\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=8\\2x=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{4;-5\right\}\)
Lời giải:
a.
$x:27=-2:3,6=\frac{-5}{9}$
$x=27.\frac{-5}{9}=-15$
b.
$\frac{2x+1}{-27}=\frac{-3}{2x+1}$
$\Rightarrow (2x+1)^2=(-27)(-3)=81=9^2=(-9)^2$
$\Rightarrow 2x+1=9$ hoặc $2x+1=-9$
$\Rightarrow x=4$ hoặc $x=-5$
\(\dfrac{1}{27}+\left(2x-\dfrac{1}{3}\right)^3=\dfrac{1}{3}\\ \Leftrightarrow\left(2x-\dfrac{1}{3}\right)^3=\dfrac{1}{3}-\dfrac{1}{27}=\dfrac{8}{27}=\left(\dfrac{2}{3}\right)^3\\ \Leftrightarrow2x-\dfrac{1}{3}=\dfrac{2}{3}\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\)
\(\dfrac{1}{27}\)+\(\left(2x-\dfrac{1}{3}\right)^3\)=\(\dfrac{1}{3}\)
⇔\(\left(2x-\dfrac{1}{3}\right)^3\)=\(\dfrac{1}{3}\)−\(\dfrac{1}{27}\)=\(\dfrac{8}{27}\)=\(\left(\dfrac{2}{3}\right)^3\)
⇔\(2x-\dfrac{1}{3}\)=\(\dfrac{2}{3}\)
⇔2\(x\)=1⇔\(x\)=\(\dfrac{1}{2}\)
Vậy \(x\)=\(\dfrac{1}{2}\)
\(\frac{2x-1}{3}=\frac{27}{2x-1}\)
\(\Rightarrow\left(2x-1\right)\left(2x-1\right)=27\cdot3\)
\(\Rightarrow\left(2x-1\right)^2=81\)
\(\Rightarrow\left(2x-1\right)^2=\left(\pm9\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x-1=9\\2x-1=-9\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=10\\2x=-8\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-4\end{cases}}\)
ko bt đề đúng ý bn chưa ?
\(\frac{2x-1}{3}=\frac{27}{2x-1}\)
\(\Leftrightarrow\left(2x-1\right)^2=27.3=81\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=9\\2x-1=-9\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=10\\2x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=-4\end{cases}}}\)
Sửa đề: \(\dfrac{2x-1}{3}=\dfrac{27}{2x-1}\)
ĐKXĐ: x<>1/2
\(\dfrac{2x-1}{3}=\dfrac{27}{2x-1}\)
=>\(\left(2x-1\right)^2=3\cdot27=81\)
=>\(\left[{}\begin{matrix}2x-1=9\\2x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=10\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=5\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
a. (x - 2)2 = 1
<=> (x - 2)2 = 12 = (-1)2
<=> \(\begin{cases}x-2=1\\x-2=-1\end{cases}\Leftrightarrow\begin{cases}x=3\\x=1\end{cases}\)
Vậy x \(\in\){1; 3}.
b. (2x - 1)3 = -8
<=> (2x - 1)3 = (-2)3
<=> 2x - 1 = -2
<=> 2x = -2 + 1
<=> 2x = -1
<=> x = -1/2
Vậy x = -1/2.
c. (x + 1/2)2 = 1/16
<=> (x + 1/2)2 = (1/4)2 = (-1/4)2
<=> \(\begin{cases}x+\frac{1}{2}=\frac{1}{4}\\x+\frac{1}{2}=-\frac{1}{4}\end{cases}\Leftrightarrow\begin{cases}x=-\frac{1}{4}\\x=-\frac{3}{4}\end{cases}\)
Vậy x \(\in\){-1/4; -3/4}.
d. (x - 2)3 = -27
<=> (x - 2)3 = (-3)3
<=> x - 2 = -3
<=> x = -3 + 2
<=> x = -1
Vậy x = -1.
a.\(\left(x-2\right)^2\)=1
<=> x-2=1 hoặc x-2=-1
<=> x= 3 hoặc x=1
b.\(\left(2x-1\right)^3\)=-8
\(\left(2x-1\right)^3\)=\(\left(-2\right)^3\)
2x-1=-2
2x=-1
x=-1/2
c.\(\left(x+\frac{1}{2}\right)^2\)=\(\frac{1}{16}\)
\(\left(x+\frac{1}{2}\right)^2\)=\(\left(\frac{1}{4}\right)^2\)hoặc \(\left(x+\frac{1}{2}\right)^2\)=\(\left(-\frac{1}{4}\right)^2\)
x+\(\frac{1}{2}\)=\(\frac{1}{4}\) hoặc x+\(\frac{1}{2}\)=-\(\frac{1}{4}\)
x=-\(\frac{1}{4}\)hoặc x=-\(\frac{3}{4}\)
d.\(\left(x-2\right)^3\)=-27
\(\left(x-2\right)^3\)=\(\left(-3\right)^3\)
x-2=-3
x=-1
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
2x-\(\frac{1}{27}\)=\(\frac{3}{2}\)x-1
<=>2x-\(\frac{3}{2}\)x=\(\frac{1}{27}\)-1
<=>\(\frac{1}{2}\)x=\(\frac{-26}{27}\)
<=>x=\(\frac{-26}{27}\):\(\frac{1}{2}\)
<=>x=\(\frac{-52}{27}\)
Vậy x=\(\frac{-52}{27}\)