K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2021

2021 - x + 2021(x - 2020x) = 0

<=> 2021 - x + 2021 - 4082420 = 0

<=> -x - 4082420 = 0

<=> x = -4082420

8 tháng 10 2021

e cảm ơn nhìu ạ

 

 

a: \(A=\left(2x-5\right)^2-4x\left(x-5\right)\)

\(=4x^2-20x+25-4x^2+20x\)

=25

b: \(B=\left(4-3x\right)\left(4+3x\right)+\left(3x+1\right)^2\)

\(=16-9x^2+9x^2+6x+1\)

=6x+17

c: \(C=\left(x+1\right)^3-x\left(x^2+3x+3\right)\)

\(=x^3+3x^2+3x+1-x^3-3x^2-3x\)

=1

d: \(D=\left(2021x-2020\right)^2-2\left(2021x-2020\right)\left(2020x-2021\right)+\left(2020x-2021\right)^2\)

\(=\left(2021x-2020-2020x+2021\right)^2\)

\(=\left(x+1\right)^2\)

\(=x^2+2x+1\)

22 tháng 12 2021

a: \(\Leftrightarrow x-3=7\)

hay x=10

17 tháng 8 2020

x4 + 2021x2 - 2020x + 2021

= (x4 + x) + 2021(x2 - x + 1)

= x(x3 + 1) + 2021(x2 - x + 1)

= x(x + 1)(x2 - x + 1) + 2021(x2 - x + 1)

= (x2 + x + 2021)(x2 - x + 1)

24 tháng 10 2021

\(a,Sửa:2021x-1+2022x\left(1-2021x\right)=0\\ \Leftrightarrow\left(2021x-1\right)\left(1-2022x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2021}\\x=\dfrac{1}{2022}\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
6 tháng 12 2023

Lời giải:

$x(x-1)+2021-2021x=0$

$\Leftrightarrow x(x-1)-(2021x-2021)=0$

$\Leftrightarrow x(x-1)-2021(x-1)=0$

$\Leftrightarrow (x-1)(x-2021)=0$

$\Leftrightarrow x-1=0$ hoặc $x-2021=0$

$\Leftrightarrow x=1$ hoặc $x=2021$

16 tháng 8 2020

a)   \(=x^4-x^3-2x^3+2x^2+2x^2-2x-x+1\)

\(=x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)\)

\(=\left(x^3-2x^2+2x-1\right)\left(x-1\right)\)

\(=\left(x^3-x^2-x^2+x+x-1\right)\left(x-1\right)\)

\(=\left(x^2-x+1\right)\left(x-1\right)^2\)

c)

\(=6x^4-12x^3+17x^3-34x^2-4x^2+8x-3x+6\)

\(=6x^3\left(x-2\right)+17x^2\left(x-2\right)-4x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(6x^3+17x^2-4x-3\right)\left(x-2\right)\)

\(=\left(6x^3+18x^2-x^2-3x-x-3\right)\left(x-2\right)\)

\(=\left(6x^2-x-1\right)\left(x+3\right)\left(x-2\right)\)

\(=\left(2x-1\right)\left(3x+1\right)\left(x+3\right)\left(x-2\right)\)

16 tháng 8 2020

b)

\(=x^4+1011x^2+1011+\left(1010x^2-2020x+1010\right)\)

\(=x^4+1011x^2+1011+1010\left(x^2-2x+1\right)\)

\(=x^4+1011x^2+1011+1010\left(x-1\right)^2\)

CÓ:   \(x^4+1010\left(x-1\right)^2+1011x^2\ge0\forall x\)

=>   \(x^4+1010\left(x-1\right)^2+1011x^2+1011\ge1011>0\forall x\)

=> ĐA THỨC b > 0 => Ko ph được thành nhân tử.

7 tháng 3 2021

Ta có x = 2020

=> x + 1 = 2021

A = x2021 - 2021x2020 + .... + 2021x - 2021

= x2021 - (x + 1)x2020 + .... + (x + 1)x - (x + 1)

= x2021 - x2021 - x2020 + .... + x2 + x - x + 1

= 1

Vậy A = 1

7 tháng 3 2021

Ta có : \(x=2020\Rightarrow x+1=2021\)

\(A=x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}-\left(x+1\right)x^{2018}+...-\left(x+1\right)x^2+\left(x+1\right)x-2021\)

= x2021 - x2021 - x2020  + x2020 + x2019 - x2019 - x2018 + ... - x3 - x2 + x+ x - 2021 = x - 2021 

mà x = 2020 hay 2020 - 2021 = -1 

Vậy với x = 2020 thì A = -1

29 tháng 8 2018

Thay 2021 = x + 1 vào A

A = x6 - ( x + 1 ) .x5 + ( x + 1 ). x4  -  ( x + 1 ). x3 + ( x + 1 ) .x2 - ( x + 1 ) .x + ( x + 1 )

   = x6 - x6 - x5 + x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + x + 1

  = 1

Vậy A = 1