Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(3x=4y;\frac{x}{4}=\frac{y}{3}\)
\(4y=5z;\frac{y}{5}=\frac{z}{4}\)
Qui đồng : \(\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{y}{4}\)
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng tích chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12};\frac{x+y+z}{20+15+12}=\frac{47}{47}=1\)
\(\Leftrightarrow\frac{x}{20}=1\Rightarrow x=20\)
\(\Leftrightarrow\frac{b}{15}=1\Rightarrow b=15\)
\(\Rightarrow\frac{z}{12}=1\Rightarrow z=12\)
Theo đề bài, ta có:
3x=4y=5z và x+y+z=47
- \(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)
- \(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\)
\(\Leftrightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)
\(\Leftrightarrow\frac{x}{20}=\frac{y}{15};\frac{y}{15}=\frac{z}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{47}{47}=1\)
- \(\frac{x}{20}=1.20=20\)
- \(\frac{y}{15}=1.15=15\)
- \(\frac{z}{12}=1.12=12\)
Vậy x=20,y=15,z=12
^...^ ^_^
\(a,\sqrt{x}=7\left(ĐKXĐ:x\ge0\right)\)
\(\Leftrightarrow\) \(\sqrt{x}=\sqrt{49}\)
\(\Leftrightarrow\) \(x=49\)
Kết hợp với ĐK x >= 0 \(\Rightarrow\) x=49 (t/m )
vậy x=49
\(\)
\(b,\sqrt{x+1}=11\left(ĐKXĐ:x\ge-1\right)\)
\(\Leftrightarrow\sqrt{x+1}\) = \(\sqrt{121}\)
\(\Leftrightarrow\) \(x+1=121\)
\(\Leftrightarrow\) \(x=120\) kết hợp với ĐK x >= -1 \(\Rightarrow\) x=120 ( t/m )
Vậy x=120
Từ \(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{-2}{x^2}=\frac{-xz^2-yz^2}{z^2+1}\)(1)
=> \(\frac{x+y}{-17}=\frac{-xz^2-yz^2}{z^2+1}\Rightarrow\frac{x+y}{-17}=\frac{-z^2\left(x+y\right)}{z^2+1}\)
=> (z2 + 1)(x + y) = 17z2(x + y)
=> z2 + 1 = 17z2
=> 16z2 = 1
=> \(z^2=\frac{1}{16}\Rightarrow\orbr{\begin{cases}z=\frac{1}{4}\\z=-\frac{1}{4}\end{cases}}\)
Từ (1) => \(\frac{3x+y}{47}=\frac{x+y}{-17}=\frac{3x+y-x-y}{47+17}=\frac{2x}{64}=\frac{x}{32}\)
Kết hợp với đề bài => \(\frac{x}{32}=\frac{-2}{x^2}\Rightarrow x^3=-64\Rightarrow x=-4\)
\(\frac{3x+y}{47}=\frac{x+y}{-17}\Rightarrow-17\left(3x+y\right)=47\left(x+y\right)\)
=> - 51x - 17y = 47x + 47y
=> -51x - 47x = 17y + 47y
=> -98x = 64y
=> -49x = 32y
=> -49 x (-4) = 32y
=> 196 = 32y
=> y = 6,125
Vậy các cặp (x;y;z) thỏa mãn là (-4 ; 6,125 ; -1/4) ; (-4 ; 6,125 ; 1/4)
a) \(\frac{-2}{3}\)- 3x = 0,75 + 5x
3x + 5x = \(\frac{-2}{3}\)- 0,75
8x = \(\frac{-17}{12}\)
x = \(\frac{-17}{12}\): 8
x =\(\frac{-17}{96}\)
Vậy x = \(\frac{-17}{96}\)
b) \(\frac{11}{12}\)- (\(\frac{2}{5}\)+ x ) = \(\frac{2}{3}\)
\(\frac{2}{5}\)+ x = \(\frac{11}{12}\)-\(\frac{2}{3}\)
\(\frac{2}{5}\)+ x = \(\frac{1}{4}\)
x = \(\frac{1}{4}\)- \(\frac{2}{5}\)
x = \(\frac{-3}{20}\)
Vậy x = \(\frac{-3}{20}\)
Có :\(\left(x-y\right)⋮11\)=> M\(⋮11\)
N= \(y^2-x^2\) = \(-\text{(}x^2-y^2\text{)}=-\text{[}\left(x-y\right).\left(x+y\right)\text{]}\)=> N\(⋮11\)
=> M-N \(⋮11\)
Vậy \(M-N⋮11\)(đpcm)
Áp dụng tính chất:\(|A|\ge0\)(Dấu "=" xảy ra khi và chỉ khi A=0)
Ta có\(A\ge0+0+0=0\)
Suy ra để A nhỏ nhát \(\Leftrightarrow\hept{\begin{cases}7x-5y=0\Rightarrow7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\Rightarrow\frac{x}{10}=\frac{y}{14}\left(1\right)\\2z-3x=0\Rightarrow2z=3x\Rightarrow\frac{z}{3}=\frac{x}{2}\Rightarrow\frac{z}{15}=\frac{x}{10}\left(2\right)\\xy+yz+xz-2000=0\Rightarrow xy+yz+xz=2000\left(3\right)\end{cases}}\)
Từ (1) và (2)
\(\Rightarrow\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\left(k\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}x=10k\\y=14k\\z=15k\end{cases}}\left(4\right)\)
Thay (4) vào (3)
\(\Rightarrow10k14k+14k15k+10k15k=2000\)
\(\Rightarrow140k^2+210k^2+150k^2=2000\)
\(\Rightarrow500k^2=2000\Rightarrow k^2=4=2^2=\left(-2\right)^2\)
Lần lượt thay K ta tìm đc các giá trị của x,y,z
Vậy ...
\(3x\left(x-1\right)+5\left(2-x\right)=3x^2-7x+6\) \(6\)
<=> \(3x^2-3x+10-5x=3x^2-7x+6\)
<=> \(-x=-4\)
<=> \(x=4\)
\(\left(x+2\right)^2=\frac{1}{2}-\frac{1}{3}\)
<=> \(\left(x+2\right)^2=\frac{1}{6}\)
<=> \(\hept{\begin{cases}x+2=\sqrt{\frac{1}{6}}\\x+2=-\sqrt{\frac{1}{6}}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{\frac{1}{6}}-2\\x=-\sqrt{\frac{1}{6}}-2\end{cases}}\)
\(\left(2-3x\right)^2+11=47\)
\(\Leftrightarrow\left(2-3x\right)^2=36\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2-3x\right)^2=6^2\\\left(2-3x\right)^2=\left(-6\right)^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2-3x=6\\2-3x=-6\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=-4\\3x=8\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{4}{3}\\x=\frac{8}{3}\end{cases}}\)
(2 - 3x)2 + 11 = 47
=> (2 - 3x)2 = 47 - 11 = 36
=> (2 - 3x)2 = 62
=> 2 - 3x = 6
=> 3x = 2 - 6 = -4
=> x = -4 : 3
=> x = \(-\frac{4}{3}\)