Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
x.2/7.3/4=5/21
x.3/14=5/21
x=5/21:3/14
x=10/9
b,
x.1/2=1/3
x=1/3:1/2
x=2/3
c,
x:4/5=25/8:5/4
x:4/5=5/2
x=5/2.4/5=2
A, x= 5/25 : 3/4 : 2/7 = 14/15
B, x=1/3 : 1/2 = 2/3
C, x=(25/8 : 5/4)x4/5 = 5/2 x 4/5 = 2
\(\left(\frac{1}{4}\cdot x-\frac{1}{8}\right)\cdot\frac{3}{4}=\frac{1}{4}\)
\(\left(\frac{1}{4}\cdot x-\frac{1}{8}\right)=\frac{1}{4}:\frac{3}{4}=\frac{1}{3}\)
\(\frac{1}{4}\cdot x=\frac{1}{3}+\frac{1}{8}=\frac{11}{24}\)
\(x=\frac{11}{24}:\frac{1}{4}=1\frac{5}{6}=\frac{11}{6}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+...+\left(x+\frac{1}{512}\right)=1\)
\(9x+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}\right)=1\)
\(9x+\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+....+\left(\frac{1}{256}-\frac{1}{512}\right)\right]=1\)
\(9x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}\right)=1\)
\(9x+\left(1-\frac{1}{512}\right)=1\)
\(9x+\frac{511}{512}=1\)
\(9x=1-\frac{511}{512}\)
\(9x=\frac{1}{512}\)
\(\Rightarrow x=\frac{1}{512}\div9=\frac{1}{4608}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(x\cdot4+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(x\cdot4+\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right)=1\)
\(x\cdot4+\frac{13}{16}=1\)
\(x\cdot4=1-\frac{13}{16}\)
\(x\cdot4=\frac{3}{16}\)
\(x=\frac{3}{16}:4\)
\(x=\frac{3}{64}\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=1\)
\(=\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=1\)
\(=4x+\frac{15}{16}=1\)
\(\Rightarrow4x=1-\frac{15}{16}=\frac{1}{16}\)
\(\Rightarrow x=\frac{1}{16}:4=\frac{1}{64}\)
a) \(x\cdot\frac{1}{2}+x\cdot\frac{1}{4}+x\cdot\frac{1}{8}=\frac{21}{24}\)
\(x\cdot\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)=\frac{7}{8}\)
\(x\cdot\frac{7}{8}=\frac{7}{8}\)
\(\Rightarrow x=\frac{7}{8}\div\frac{7}{8}=1\)
b) \(\left(x+4\right)+\left(x+9\right)+\left(x+14\right)+.....+\left(x+44\right)+\left(x+49\right)=1430\)
\(\left(x+x+x+....+x+x\right)+\left(4+9+14+...+44+49\right)=1430\)
\(10x+265=1430\)
\(10x=1430-265\)
\(10x=1165\)
\(\Rightarrow x=\frac{1165}{10}=116,5\)
c) \(x\cdot0,25-0,5=1\)
\(x\cdot0,25=1+0,5\)
\(x\cdot0,25=1,5\)
\(\Rightarrow x=1,5\div0,25=6\)
Ta có : \(\frac{1}{4}+\frac{1}{3}:\frac{1}{x}=\frac{11}{12}\)
\(\Rightarrow\frac{1}{3}:\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)
\(\frac{1}{3}:\frac{1}{x}=\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}:\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}\times\frac{3}{2}\)
\(\frac{1}{x}=\frac{1}{2}\)
=> x = 2
a) \(\frac{x\div3-16}{2}+21=38\)
\(\frac{x\div3-16}{2}=38+21\)
\(\frac{x\div3-16}{2}=59\)
\(x\div3-16=59.2\)
\(x\div3-16=118\)
\(x\div3=118+16\)
\(x\div3=134\)
\(x=134.3\)
\(x=402\)
b) \(\frac{1}{4}+\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}\)
\(\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)
\(\frac{1}{3}\div\frac{1}{x}=\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}\div\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{2}\)
Vậy x = ....
\(x+\frac{2}{3}=8:4-1\)
\(\Rightarrow x+\frac{2}{3}=2-1=1\)
\(\Rightarrow x=1-\frac{2}{3}=\frac{1}{3}\)
= \(\frac{11}{6}\)
(1/4 * x - 1/8) * 3/4 = 1/4
=> 1/4 * x - 1/8 = 1/4 : 3/4
=> 1/4 * x - 1/8 = 1/3
=> 1/4 * x = 1/3 + 1/8
=> 1/4 * x = 11/24
=> x = 11/24 : 1/4
=> x = 11/6