![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6.\)
\(\Leftrightarrow x^2-4x+4-x^2+9-6=0\)
\(\Leftrightarrow-4x+7=0\)
\(\Leftrightarrow4x=7\Leftrightarrow x=1,75\)
\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10.\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-4x^2+1-10=0\)
\(\Leftrightarrow-24x+27=0\)
\(\Leftrightarrow24x=27\Leftrightarrow x=1,125\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a ) \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Leftrightarrow x^2-4x+4-x^2+9=6\)
\(\Leftrightarrow-4x+13=6\)
\(\Leftrightarrow-4x=-7\)
\(\Leftrightarrow x=\frac{7}{4}\)
Vậy \(x=1\).
b ) \(4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(\Leftrightarrow4x^2-24x+36-4x^2+1=10\)
\(\Leftrightarrow-24x+37=10\)
\(\Leftrightarrow-24x=27\)
\(\Leftrightarrow x=\frac{9}{8}.\)
Mấy pài kia tương tự . :D
![](https://rs.olm.vn/images/avt/0.png?1311)
a, (x-2)^2 - (x-3)(x+3)=6
x^2-4x+4-(x^2-9)=6
x^2-4x+4-x^2+9=6
(x^2-x^2)-4x+13=6
-4x=-7
x=1,75
b, 4(x-3)^2 - (2x-1)(2x+1)=10
4(x^2-6x+9)-(4x^2-1)=10
4x^2-24x+36-4x^2+1=10
-24x+37=10
x=9/8
c,(x-4)^2 - (x+2)(x-2)=6
x^2-8x+16-(x^2-4)=6
x^2-8x+16-x^2+4=6
-8x+20=6
x=7/4
d, 9(x+1)^2 - (3x-2)(3x+2)=10
9(x^2+2x+1)-(9x^2-4)=10
9x^2+18x+9-9x^2+4=10
18x+13=10
x=-1/6
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(-4x+13=6\)
\(-4x=6-13\)
\(-4x=-7\)
\(x=\frac{-7}{-4}\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
\(b,4\left(x-3\right)^2-\left(2x-1\right)\left(2x+1\right)=10\)
\(4\left(x^2-6x+9\right)-\left(4x^2-1\right)=10\)
\(4x^2-24x+36-4x^2+1=10\)
\(-24x+37=10\)
\(x=\frac{9}{8}\)
Vậy \(x=\frac{9}{8}\)
\(c,\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)
\(x^2-8x+16-\left(x^2-4\right)=6\)
\(x^2-8x+16-x^2+4=6\)
\(-8x+20=6\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
\(d,9\left(x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(9\left(x^2+2x+1\right)-\left(9x^2-4\right)=10\)
\(9x^2+18x+9-9x^2+4=10\)
\(18x+13=10\)
\(x=\frac{-1}{6}\)
Vậy \(x=\frac{-1}{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x^3 - 64 - x^3 +6x = 2
(x^3 - x^3) + 6x = 2+64 quy tắc chuyển vế nhé bạn
6x = 66
x = 66:11
x = 6
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x+2\right)\left(x+3\right)-\left(x+1\right)\left(x+7\right)=6\)
\(\Leftrightarrow x^2+5x+6-x^2-8x-7=6\)
\(\Leftrightarrow-3x=7\)
\(\Leftrightarrow x=-\frac{7}{3}\)
b) \(\left(8x-3\right)\left(3x+2\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)-33\)
\(\Leftrightarrow\left(8x-3\right)\left(9x^2+12x+4\right)-4x^2-23x-28=10x^2+3x-1-33\)
\(\Leftrightarrow72x^3+69x^2-4x-12-14x^2-26x+6=0\)
\(\Leftrightarrow72x^3+55x^2-30x-6=0\)
Nghiệm vô tỉ: \(x_1=-1,078...\) ; \(x_2=0,476...\) ; \(x_3=-0,162...\)
a) (x + 2)(x + 3) - (x + 1)(x + 7) = 6
=> x(x + 3) + 2(x + 3) - x(x + 7) - 1(x + 7) = 6
=> x2 + 3x + 2x + 6 - x2 - 7x - x - 7 = 6
=> x2 + 5x + 6 - x2 - 7x - x - 7 = 6
=> (x2 - x2) + (5x - 7x - x) + (6 - 7) = 6
=> -3x - 1 = 6
=> -3x = 7
=> x = -7/3
b) (8x - 3)(3x + 2)(3x + 2) - (4x + 7)(x + 4) = (2x + 1)(5x - 1) - 33
=> (8x - 3)(9x2 + 12x + 4) - [4x(x + 4) + 7(x + 4)] = 2x(5x - 1) + 1(5x - 1) - 33
=> 8x(9x2 + 12x + 4) - 3(9x2 + 12x + 4) - (4x2 + 16x + 7x + 28) = 10x2 - 2x + 5x - 1 - 33
=> 72x3 + 96x2 + 32x - 27x2 - 36x - 12 - 4x2 - 16x - 7x - 28 - 10x2 + 2x - 5x + 1 + 33 = 0
=> 72x3 + (96x2 - 27x2 - 10x2 - 4x2) + (32x - 36x - 16x - 7x + 2x - 5x) + (-12 - 28 + 1 + 33) = 0
=> 72x3 + 55x2 - 30x - 6 = 0
=> x vô nghiệm
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(2x\left(x+1\right)-3-2x=5\)
\(\Leftrightarrow2x^2+2x-3-2x=5\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4=\left(-2\right)^2=2^2\)
\(\Rightarrow x=2;-2\)
b)\(2x\left(3x+1\right)+\left(4-2x\right)=7\)
\(\Leftrightarrow6x^2+2x+4-2x=7\)
\(\Leftrightarrow6x^2+4=7\)
\(\Leftrightarrow6x^2=3\)
\(\Leftrightarrow x^2=\frac{1}{2}=-\sqrt{\frac{1}{2}}=\sqrt{\frac{1}{2}}\)
c)\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x-1\right)^2=6\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6\left(x^2-2x+1\right)=6\)
\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)
\(\Leftrightarrow-3x^2+27x+6x^2-12x+6=6\)
\(\Leftrightarrow3x^2+15x=0\)
\(\Leftrightarrow3x\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x=0\\x+5=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
=x(x+2)-3(x+2)=4(x+2)=(x+2)(x-3)=4(x+2)<=>(x-3)=\(\frac{4\left(x+2\right)}{x+2}\)=4<=>x=7.vay x=7
Xx+2)-(3x+6)=4(x+2)
x(x+2)-3(x+2)=4(x+2)
(x-3)(x+2)=4(x+2)
4(x+2)-(x-3)(x+2)=0
(4-x-3)(x+2)=0
(1-x)(x+2)=0
SUY ra :1-x=0 hoac x+2=0
nen x=1 hoac x=-2
vay x= 1 hoac x = -2