Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x+3\right)^2=\frac{9}{144}\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(\frac{1}{4}\right)^2=\left(-\frac{1}{4}\right)^2\)
\(\Rightarrow\orbr{\begin{cases}2x+3=\frac{1}{4}\\2x+3=\frac{-1}{4}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{-11}{4}\\2x=\frac{-13}{4}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-11}{8}\\x=\frac{-13}{8}\end{cases}}}\)
Vậy ...
b) Ta có: \(\left(3x-1\right)^3=\frac{-8}{27}=\left(\frac{-2}{3}\right)^3\)
\(\Leftrightarrow3x-1=\frac{-2}{3}\Leftrightarrow3x=\frac{1}{3}\Leftrightarrow x=\frac{1}{9}\)
Vậy ....
c) \(x^{10}=25x^8\Leftrightarrow x^{10}:x^8=25\Leftrightarrow x^2=25\Leftrightarrow x=\left\{5;-5\right\}\)
Vậy ...
d) \(\frac{x^7}{81}=27\Leftrightarrow x^7=27.81=2187\)
Mà 37 = 2187 => x7 = 37 => x = 3
Vậy ....
e) \(\frac{x^8}{9}=729\Leftrightarrow x^8=729.9=6561\)
Mà 38 = (-3)8 = 6561
=> x8 = 38 = (-3)8
=> x = {-3;3}
Vậy ...
Nghiệm của đa thứ h(x) là tất cả các giá trị của x sao cho, h(x)=0
=> x3+25x=0
=>x(x2+25)=0
=> x=0 hay x2+25=0
=>x=0 hay x2=-25(vô lí)
=>x=0
a) \(\left(x^4\right)^2=\dfrac{x^{12}}{x^5}\\ x^8=x^7\\ \Rightarrow x=1;x=-1\)
b)\(x^{10}=25.x^8\\ x^2=25\\ \Rightarrow\left\{{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
a) \(\left(x^4\right)^2=\dfrac{x^{12}}{x^5}\)
\(\Rightarrow x^8=x^7\)
\(\Rightarrow x^8-x^7=0\)
\(\Rightarrow x^7.x-x^7=0\)
\(\Rightarrow x^7\left(x-1\right)=0\)
\(\Rightarrow x-1=0\) (vì x^7 \(\ne\)0)
\(\Rightarrow\) x=1
b) x^10=25x^8
\(\Rightarrow x^8.x^2-25x^8=0\)
\(\Rightarrow x^8\left(x^2-25\right)=0\)
\(\Rightarrow x^8=0\) hoặc \(x^2-25=0\)
1) x^8=0
\(\Rightarrow\) x=0(1)
2) x^2 -25=0
x^2=0+25
x^2=25
x^2=5^2 hay x^2=(-5)^2
Suy ra x=5 hoặc x=-5 (2)
Từ (1) và (2)\(\Rightarrow\)x\(\in\left\{0;5;-5\right\}\)
EM KO CHÉP ĐÁP ÁN NHÉ
a, A = x5 - 5x4 + 5x3 - 5x2 + 5x - 1
A= x5 - ( 4+1 ) x4 + ( 4+1 ) x3 - ( 4+1) x2 + ( 4+1 ) x -1
Thay 4 = x vào biểu thức A, ta đc :
A = x5 - ( x+1 ) x4 + ( x+1 ) x3 - ( x+1 ) x2 + ( x+1 ) x - 1
A = x5 - x5 - x4 + x4 + x3 - x3 - x2 + x2 + x -1
A = x -1
Thay x = 4 vào biểu thức A, ta đc :
A = 4 -1
A = 3
b, B = x7 - 80x6 + 80x5 - 80x4 + .....+ 80x + 15
B = x7 - ( 79 +1 ) x6 + ( 79+1 )x5 - ( 79+1 ) x4 +....+( 79+1 )x + 15
Thay 79 = z vào biểu thức A, ta có :
B = x7 - ( x + 1 )x6 + ( x+1 )x5 - ( x+1 )x4 + .....+ ( x+1 )x +15
B= x7 - x7 - x6 + x6 + x5 - x5 - x4 + .....- x2 + x2 + x + 15
B= x + 15
Thay x= 79 vào biểu thức A, ta có:
A = 79 + 15
A= 94
c, C = x14 - 10x13 + 10x12 - 10x11 + ....+ 10x2 - 10x + 10
C= x14 - ( x +1 )x13 + ( x + 1 ) x12 - ( x + 1 )x11 + ..... + ( x + 1 )x2 - ( x + 1 )x - 10
C= x14 - x14 - x13 + x13 + x12 - x12 - x11 +....+ x3 - x2 + x2 - x +10
C= -x -10
Thay -x = -9 vào biểu thức C, ta có :
C = -9 + 10
C = 1
d, D = x10 - ( x+1 )x9 + (x + 1 )x8 - ( x+1 )x7 +....+( x+1 )x2 - ( x + 1 )x + 25
D = x10 - ( x + 1 ) x9 + ( x + 1 )x8 - ( x + 1 )x7 + ..... + x3 - x2 + x2 - x + 25
D = -x + 25
thay -x = -24, vào biểu thức A , ta đc ;
A = -24 + 25
A = 1
\(A=x^5-5x^4+5x^3-5x^2+5x-1\)
\(=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-x+3\)
\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-x+3\)
\(=3\)
\(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
\(\Leftrightarrow\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
\(\Leftrightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}=\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}\)
\(\Leftrightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}-\frac{x+1}{12}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)=0\)
\(\Leftrightarrow x+1=0\)( \(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\ne0\))
\(\Leftrightarrow x=-1\)
Vậy x=-1
mỗi phân số + 1 thì sẽ có tử chung là x + 1
chuyển vế có \(\left(x+1\right)\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)\)) =0
mà tổng các phân số kia khác 0 nên x+1 bằng 0
=> x=-1
Cái này chỉ cần làm quy tắc nhân chéo là ra rồi nhé :)
a) \(x=\dfrac{-2,6.42}{-12}\)=9,1
b) x = \(\dfrac{2,5.12}{1.5}\) = 20
c) Nhân chéo: 7.(x-1) = 6.(x+5)
<=> 7x - 7 = 6x +30
<=> 7x - 6x = 7 + 30 (chuyển vế)
-> x = 37
d) Nhân chéo: 25x2 = 24.6 = 144
x2 = \(\dfrac{144}{25}\)=5,76
-> x = \(\sqrt{5,76}\) = 2,4
e) Nhân chéo: (x-2)2 = 4.9 = 36
Ta dễ thấy (x-2)2 = 62
-> x-2 = 6 -> x = 6+2 = 8
TICK NHÉ :)
1. \(x^{10}=25x^8\Leftrightarrow x^{10}:x^8=25\Leftrightarrow x^2=25=5^2\Leftrightarrow x=5\)
2. \(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=\frac{2^{40}}{2^{30}}=2^{10}\)
1)\(x^{10}=25x^8\)
\(\Rightarrow x^{10}:x^8=25\)
\(\Rightarrow x^2=5^2\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=-5\end{cases}}\)
2)\(\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\frac{2^{60}+2^{40}}{2^{50}+2^{30}}=\frac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}\)
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
a) \(\left(x^4\right)^2=\frac{x^{12}}{x^5}\left(x\ne0\right)\)
\(\Rightarrow x^8=x^7\)
\(\Rightarrow x^8-x^7=0\)
\(\Rightarrow x^7.\left(x-1\right)=0\)
\(\Rightarrow x-1=0\) ( vì \(x^7\ne0\) )
Vậy \(x=1\)
b ) \(x^{10}=25x^8\)
\(\Rightarrow x^{10}-25x^8=0\)
\(\Rightarrow x^8.\left(x^2-25\right)=0\)
\(\Leftrightarrow x^8=0\) hoặc \(x^2-25=0\)
Do đó \(x=0\) hoặc \(x=5\) hoặc \(x=-5\)
Vậy \(x\in\left\{0;5;-5\right\}\)
\(x^9=25x^7\)
\(\Rightarrow x^9-25x^7=0\)
\(\Rightarrow x^7\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^7=0\\x^2-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=25\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x\in\left[5;-5\right]\end{cases}}}\)
Vậy \(x\in\left\{0;5;-5\right\}\)