Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/3 + 1/6 + 1/10 + ... + 1/x(x+1):2 = 2001/2003
=> 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 2001/2003
=> 2 [1/6 + 1/12 + 1/20 + ... + 1/x(x+1)] = 2001/2003
=> 2 [1/2x3 + 1/3x4 + 1/4x5 + ... + 1/x+(x+1)] = 2001/2003
=> 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/x - 1/x+1= 2001/2003 : 2
=> 1/2 - 1/x+1 = 2001/4006
=> 1/x+1 = 1/2 - 2001/4006 = 1/2003
=> x+1 = 2003 = 2002 + 1
=>x = 2002
= 2/(2.3) + 2/3.4 + 2/4.5 +...+ 2/x(x+1) = 2 [1/2-1/3+1/3-1/4+...+1/x-1/(x+1)]
=2[1/2-1/(x+1)]= (x-1)/(x+1) = 2001/2003
==> x=2002
1: \(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x=0\)
=>\(\left(x-1\right)^x\cdot\left[\left(x-1\right)^2-1\right]=0\)
=>\(x\left(x-1-1\right)\cdot\left(x-1\right)^x=0\)
=>x(x-2)(x-1)^x=0
=>x=0;x=2;x=1
2: \(\Leftrightarrow\left(6-x\right)^{2003}\left(x-1\right)=0\)
=>6-x=0 hoặc x-1=0
=>x=6;x=1
3: =>(7x-11)^3=32*25+200=1000
=>7x-11=10
=>7x=21
=>x=3
4: =>x^2-1=-3 hoặc x^2-1=3
=>x^2=-2(loại) hoặc x^2=4
=>x=2 hoặc x=-2
a) x+(x+1)+(x+2)+(x+3)+...+2003=2003
x+(x+1)+(x+2)+(x+3)+...+2003=2003
X+(x+1)+(x+2)+(x+3)+...+2002=0
( Vì ta thấy đây là tổng của một dãy số các số hạng liên tiếp nên day tren co so cuoi la 2002 va tong tat ca bang 0 vi 2003-2003=0 ma)
Goi so so hang cua day so tren la n(nkhac 0)
Suy ra ta co ((2002+x).n):2=0
suy ra (2002+x).n=0
Mà n khác 0
Suy ra 2002+x=0
x=0-2002
x=-2002
Vay x=-2002
Cậu b bạn làm tương tự nhé!
Neu to co lam sai thi ban thong cam nhe!
\(\frac{x+5}{2005}+1+\frac{x+6}{2004}+1+\frac{x+7}{2003}+1=-3+3=0\)
\(\frac{x+2010}{2005}+\frac{x+2010}{2004}+\frac{x+2010}{2003}=0\)
\(\left(x+2010\right)\left(\frac{1}{2005}+\frac{1}{2004}+\frac{1}{2003}\right)=0\)
=> x + 2010 = 0
=> x = -2010
sao bạn để tên là mèo ú mà hình bạn ko phải doraemon mà lại là tanjiro
\(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
\(\Leftrightarrow x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)
\(\Leftrightarrow\left(6-x\right)^{2003}\left(x-1\right)=0\Leftrightarrow x=6;x=1\)