K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2019

|x+4| +|x-2|-|x-4|=3 (1)

* TH1: x ≤ - 4
(1) <=> -x-4-x+2+x-4=3
<=> x=-9 (TMĐK)
*TH2: -4<x<2
(1) <=> x+4-x+2+x-4=3
<=> x=1 (TMĐK)
*TH3: 2<x<4
(1) <=> x+4+x-2+x-4=3
<=> x= 5/3 (TMĐK)
*TH4: x ≥ 4
(1) <=> x+4+x-2-x+4=3
<=> x= - 3 (KTMĐK)
Vậy x ∈ { -9;1;5/3}
&Chúc bạn học tốt :>

1 tháng 7 2015

1) <=> 1 - sin2x + sin x + 1 = 0 

<=> - sin2x + sin x = 0 <=> sinx.(1 - sin x) = 0 <=> sin x = 0 hoặc sin x = 1

+) sin x = 0 <=> x = k\(\pi\)

+) sin x = 1 <=> x = \(\frac{\pi}{2}+k2\pi\)

2) <=> 2cos x - 2(2cos2 x - 1) = 1 <=> -4cos2 x + 2cos x + 1 = 0 

\(\Delta\)' = 5 => cosx = \(\frac{-1+\sqrt{5}}{-4}\) (Thỏa mãn) hoặc cosx =  \(\frac{-1-\sqrt{5}}{-4}=\frac{\sqrt{5}+1}{4}\)(Thỏa mãn)

cosx = \(\frac{-1+\sqrt{5}}{-4}\) <=> x = \(\pm\) arccos \(\frac{-1+\sqrt{5}}{-4}\) + k2\(\pi\)

cosx =  \(\frac{\sqrt{5}+1}{4}\) <=> x =\(\pm\) arccos \(\frac{\sqrt{5}+1}{4}\) +  k2\(\pi\)

Vậy....
3) chia cả 2 vế cho 2 ta được:
\(\frac{1}{2}\sin x-\frac{\sqrt{3}}{2}\cos x=\frac{1}{2}\) <=> \(\cos\frac{\pi}{3}\sin x\sin-\sin\frac{\pi}{3}\cos x=\sin\frac{\pi}{6}\Leftrightarrow\sin\left(x-\frac{\pi}{3}\right)=\sin\frac{\pi}{6}\)
<=> \(x-\frac{\pi}{3}=\frac{\pi}{6}+k2\pi\) hoặc \(x-\frac{\pi}{3}=\frac{5\pi}{6}+k2\pi\)
<=> \(x=\frac{\pi}{2}+k2\pi\) hoặc \(x=\frac{7\pi}{6}+k2\pi\)
Vậy....
 
1 tháng 7 2015

1)  Có: m4 - m2 + 1 = (m2 - \(\frac{1}{2}\))2 + \(\frac{3}{4}\) > 0 với mọi m

|x2 - 1| = m4 - m2 + 1   

<=> x2 - 1 = m4 - m2 + 1    (1)  hoặc x2 - 1 = - ( m4 - m2 + 1 )    (2)

Rõ ràng : nếu x1 là nghiệm của (1) thì x1 không là nghiệm của (2)

Để pt đã cho 4 nghiệm phân biệt <=> pt (1) và (2) đều có 2 nghiệm phân  biệt

(1) <=> x2 = m4 - m2 + 2 > 0 với mọi m => (1) luôn có 2 nghiệm phân biệt

(2) <=> x2 = - m4 + m2 . Pt có 2 nghiệm phân biệt <=> m2 - m4 > 0 <=> m2.(1 - m2) > 0 

<=> m \(\ne\) 0 và 1 - m2 > 0 

<=> m \(\ne\) 0  và -1 < m < 1

Vậy với  m \(\ne\) 0  và -1 < m < 1 thì pt đã cho có 4 nghiệm pb

NV
11 tháng 9 2021

Pt trùng phương chỉ có các trường hợp

- Vô nghiệm

- Có 2 nghiệm phân biệt

- Có 4 nghiệm phân biệt

- Có 2 nghiệm kép

- Có 3 nghiệm (trong đó 2 nghiệm pb và 1 nghiệm kép \(x=0\))

Không tồn tại trường hợp có 3 nghiệm pb

11 tháng 9 2021

\(x^4-2mx^2+\left(2m-1\right)=0\left(1\right)\)

Đặt \(t=x^2\), pt trở thành:

\(t^2-2mt+\left(2m-1\right)=0\left(2\right)\)

Để pt(1) có 3 nghiệm thì pt(2) có 1 nghiệm dương khác 0 và 1 nghiệm bằng 0

\(\Leftrightarrow2m-1=0\Leftrightarrow m=\dfrac{1}{2}\\ \Leftrightarrow t^2-t=0\\ \Leftrightarrow\left[{}\begin{matrix}t=0\\t=1\end{matrix}\right.\left(nhận\right)\)

Vậy \(m=\dfrac{1}{2}\)

 

21 tháng 7 2016

a/ Áp dụng tính chất phân phối ta được:

\(\left(x+1\right)\left(x+2\right)\)

\(=x^2+x+2x+2\)

\(=x^2+2x+1^2+x+1\)

\(=\left(x+1\right)^2+x+1\)

Mà \(x< \left(x+1\right)^2\)

\(\Rightarrow\left(x+1\right)^2+x+1>0\)

=> Biểu thức trên lớn hơn 0

=> Không có kết quả (Sai đề)

b/ Áp dụng tính chất phân phối ta được:

\(\left(x-2\right)\left(x+\frac{2}{3}\right)\)

\(=x^2-2x+\frac{2}{3}x-\frac{4}{3}\)

\(=x^2-2x+1+\frac{2}{3}x-\frac{1}{3}\)

\(=\left(x-1\right)^2+\frac{2}{3}x-\frac{1}{3}\)

\(=\left(x-1\right)^2+\frac{1}{3}\left(2x-1\right)\)

Mà \(\left(x-1\right)^2\ge0\)

=> Để thỏa mãn đề bài cần \(\frac{1}{3}\left(2x-1\right)>0\)

 

=> \(2x>1\Rightarrow x>\frac{1}{2}\)

21 tháng 7 2016

a ) \(\left(x+1\right).\left(x+2\right)< 0\)

\(=x.\left(x+2\right)+1.\left(x+2\right)< 0\)

\(=x.\left(x-2\right)+\left(x+2\right)< 0\)

\(\Rightarrow x\in Z\)

\(\Rightarrow x>2\)

 

21 tháng 8 2017

ta có : \(\dfrac{-3}{6}=\dfrac{x}{-2}=\dfrac{-18}{y}=\dfrac{3}{24}\)

\(\Rightarrow\dfrac{-3}{6}=\dfrac{3}{24}\) (vô lí)

\(\Rightarrow\) đề sai

\(\left(x+2\right)\left(3-4x\right)=x^2+4x+4\\ \Leftrightarrow6-5x-4x^2=x^2+4x+4\\ \Leftrightarrow5x^2+9x-2=0\\ \Leftrightarrow5\left(x+\dfrac{9}{10}\right)^2=\dfrac{121}{20}\\ \Leftrightarrow\left(x+\dfrac{9}{10}\right)^2=\dfrac{\dfrac{121}{20}}{5}=\dfrac{121}{100}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{9}{10}=\dfrac{11}{10}\\x+\dfrac{9}{10}=-\dfrac{11}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2\end{matrix}\right.\)

vậy x cần tìm là 0,2 và 2

9 tháng 7 2017

a)Từ \(x\cdot2y=\dfrac{2x}{y}\Rightarrow2x=x\cdot2y^2\)

Do \(x,y\ne 0\) nên \(2=2y^2\Rightarrow y^2=1\Rightarrow y=\pm1\)

*)Xét \(y=1\Rightarrow3x-2=2x\Rightarrow x=2\)

*)Xét \(y=-1\Rightarrow3x+2=-2x\Rightarrow x=-\dfrac{2}{5}\)

b)\(\left|4x-3\right|+\left|3xy-5\right|=0\)

Dễ thấy: \(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|3xy-5\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|4x-3\right|+\left|3xy-5\right|\ge0\)

Xảy ra khi \(\left\{{}\begin{matrix}\left|4x-3\right|=0\\\left|3xy-5\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4x-3=0\\3xy-5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\3xy-5=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{20}{9}\end{matrix}\right.\)

7 tháng 12 2018

a) x-7 = - 5

<=> x= 2

b) 128 - 3.x.(x+4) = 23

<=> - 3x2 - 12x +105=0

<=> -x2 -4x + 35 =0

\(\Delta'=156\Rightarrow\sqrt{\Delta'}=2\sqrt{39}\)

=> \(\left[{}\begin{matrix}x=-2+\sqrt{39}\\x=-2-\sqrt{39}\end{matrix}\right.\)

vậy S= \(\left\{-2+\sqrt{39};-2-\sqrt{39}\right\}\)