Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^3+3^3\right)-x\left(x^2-4\right)=15\)
\(x^3+27-x^3+4x=15\)
\(4x=15-27\)
\(4x=-12\)
\(x=-3\)
(x+3)(x2-3x+9)-x(x-2)(x+2)=15
=>x3+27-4x-x3=15
=>(x3-x3)+4x+27=15
=>4x+27=15
=>4x=-12
=>x=-3.Vậy x=-3
câu này sai đề (x -3)3 -(x-3)(x2 +3x+9) +9(x+1)2 = 15
1 , <=> 25x^2 + 10x + 1 - ( 25x^2 - 9) = 30
<=> 25x^2 + 10x + 1 - 25x^2 + 9 = 30
<=> 10x + 10 = 30
<=> 10 ( x + 1) = 30
<=> x + 1 = 3
<=> x = 2
2, ( x + 3)(x^2 - 3x + 9 ) - x(x+2)(x-2) = 15
<=> x^3 - 27 - x(x^2 - 4) = 15
<=> x^3 - 27 - x^3 + 4x = 15
<=> 4x -27 = 15
<=> 4x = 15 + 27
<=> 4x =42
<=> x = 42/4 = 21/2
******************
\(=>x^3+6x^2+12x+8-x^3+27+6x^2+12x+6=15\)
\(=>12x^2+24x+41-15=0\)
\(=>12x^2+24x+26=0\)
\(=>12\left(x^2+2x+1\right)+14=0\)
\(=>12\left(x+1\right)^2+14=0\)
\(=>2[6\left(x+1\right)^2+7]=0\)
\(=>6\left(x+1\right)^2+7=0\)
Mà \(\left(x+1\right)^2\ge0\)nên \(6\left(x+1\right)^2+7>0\)
Vậy ko có giá trị x nào thỏa mãn đề bài
a/3x(12x - 4 ) -9x (4x -3 ) = 30
<=> 36x^2 - 12x - 36x²+27x = 30
<=> 15x = 30
<=> x=2
b/ => 5x -2. x^2 + 2.x^2 -2x = 15
=> 5x -2x = 15
=> 3x = 15 => x= 5
a/3x(12x - 4 ) -9x (4x -3 ) = 30
36x^2 - 12x - 36x²+27x = 30
15x = 30
x=2
b/ 5x -2. x^2 + 2.x^2 -2x = 15
5x -2x = 15
3x = 15 => x= 5
a) (x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2=49
=> x3 - 6x2 + 24x - 8 - x3 + 3x2 - 3x2 + 9x - 9x + 27 + 6x2 + 12x +6 = 49
=> 36x + 25 - 49 = 0 => 36x - 24 = 0 => x = 2/3
b) (x + 2)(x2 - 2x + 4)-x(x2 + 2)=15
=> x3 + 2x2 - 2x2 - 4x + 4x + 8 - x3 - 2x = 15
=> 8 - 2x - 15 = 0 => -2x - 7 = 0 => x = -7/2
Trả lời:
a, \(\left(3x+1\right)\left(x-3\right)-x\left(3x-14\right)=15\)
\(\Leftrightarrow3x^2-9x+x-3-3x^2+14x=15\)
\(\Leftrightarrow6x-3=15\)
\(\Leftrightarrow6x=18\)
\(\Leftrightarrow x=3\)
Vậy x = 3 là nghiệm của pt.
b, \(\left(x-3\right)^2=9-x^2\)
\(\Leftrightarrow\left(x-3\right)^2-9+x^2=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(x^2-9\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-3+x+3\right)=0\)
\(\Leftrightarrow\left(x-3\right).2x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}}\)
Vậy x = 3; x = 0 là nghiệm của pt.
c, \(\left(2x-\frac{1}{2}\right)^2-\left(1-2x\right)^2=2\)
\(\Leftrightarrow4x^2-2x+\frac{1}{4}-\left(1-4x+4x^2\right)=2\)
\(\Leftrightarrow4x^2-2x+\frac{1}{4}-1+4x-4x^2=2\)
\(\Leftrightarrow2x-\frac{3}{4}=2\)
\(\Leftrightarrow2x=\frac{11}{4}\)
\(\Leftrightarrow x=\frac{11}{8}\)
Vậy x = 11/8 là nghiệm của pt.
d, \(4x^2+4x-3=0\)
\(\Leftrightarrow4x^2-2x+6x-3=0\)
\(\Leftrightarrow2x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)
Vậy x = 1/2; x = - 3/2 là nghiệm của pt.
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
\(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow x^3+27-x^3+2x=15\)
\(\Leftrightarrow2x=-12\)
\(\Leftrightarrow x=-6\)