K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

ta có : \(x+3+\dfrac{4-3a^2}{a^2-9}=\dfrac{5}{2a^2+6a}\)

\(\Leftrightarrow x+3=\dfrac{5}{2a^2+6a}-\dfrac{4-3a^2}{a^2-9}\)

\(\Leftrightarrow x+3=\dfrac{5}{2a\left(a+3\right)}-\dfrac{4-3a^2}{\left(a+3\right)\left(a-3\right)}\) \(\Leftrightarrow x+3=\dfrac{5\left(a-3\right)-2a\left(4-3a^2\right)}{2a\left(a+3\right)\left(a-3\right)}\) \(\Leftrightarrow x+3=\dfrac{5a-15-8a+6a^3}{2a\left(a+3\right)\left(a-3\right)}=\dfrac{6a^3-3a-15}{2a\left(a+3\right)\left(a-3\right)}\)

\(\Leftrightarrow x=\dfrac{6a^3-3a-15}{2a\left(a+3\right)\left(a-3\right)}-3=\dfrac{6a^3-3a-15-3.2a\left(a^2-9\right)}{2a\left(a+3\right)\left(a-3\right)}\)

\(\Leftrightarrow x=\dfrac{6a^3-3a-15-6a^3+54a}{2a\left(a+3\right)\left(a-3\right)}=\dfrac{51a-15}{2a\left(a^2-9\right)}\)

Bác làm nhanh ***** :((

23 tháng 7 2023

a) \(\dfrac{3a^2}{10b^3}\cdot\dfrac{15b}{9a^4}\)

\(=\dfrac{3a^2\cdot15b}{10b^3\cdot9a^4}\)

\(=\dfrac{1\cdot3}{2\cdot b^2\cdot3\cdot a^2}=\dfrac{3}{6a^2b^2}\)

b) \(\dfrac{x-3}{x^2}\cdot\dfrac{4x}{x^2-9}\)

\(=\dfrac{x-3}{x^2}\cdot\dfrac{4x}{\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{\left(x-3\right)\cdot4x}{x^2\left(x+3\right)\left(x-3\right)}\)

\(=\dfrac{4}{x\left(x+3\right)}\)

c) \(\dfrac{a^2-6x+9}{a^2+3a}\cdot\dfrac{2a+6}{a-3}\)

\(=\dfrac{\left(a-3\right)^2}{a\left(a+3\right)}\cdot\dfrac{2\cdot\left(a+3\right)}{a-3}\)

\(=\dfrac{\left(a-3\right)^2\cdot2\cdot\left(a+3\right)}{a\left(a+3\right)\left(a-3\right)}\)

\(=\dfrac{2\left(a-3\right)}{a}\)

d) \(\dfrac{x+1}{x}\cdot\left(x+\dfrac{2-x^2}{x^2-1}\right)\)

\(=\dfrac{\left(x+1\right)\cdot x}{x}+\dfrac{x+1}{x}\cdot\dfrac{2-x^2}{x^2-1}\)

\(=x+1+\dfrac{x+1}{x}\cdot\dfrac{2-x^2}{\left(x+1\right)\left(x-1\right)}\)

\(=x+\dfrac{2-x^2}{x\left(x-1\right)}\)

=))) để r xem

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) ĐKXĐ: $a\neq 0; a\neq 3; a\neq 2$

\(P=\left[\frac{a}{3a(a-2)}-\frac{2a-3}{a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\left[\frac{a^2}{3a^2(a-2)}-\frac{6a-9}{3a^2(a-2)}\right].\frac{6a}{(a-3)^2}=\frac{a^2-6a+9}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{(a-3)^2}{3a^2(a-2)}.\frac{6a}{(a-3)^2}=\frac{2}{a(a-2)}\)

b) 

Để $P>0\Leftrightarrow \frac{2}{a(a-2)}>0\Leftrightarrow a(a-2)>0$

$\Leftrightarrow a>2$ hoặc $a< 0$

Kết hợp với ĐKXĐ suy ra $(a>2; a\neq 3)$ hoặc $a< 0$

ĐKXĐ: \(a\notin\left\{0;2\right\}\)

a) Ta có: \(P=\left(\dfrac{a}{3a^2-6a}+\dfrac{2a-3}{2a^2-a^3}\right)\cdot\dfrac{6a}{a^2-6a+9}\)

\(=\left(\dfrac{a}{3a\left(a-2\right)}+\dfrac{2a-3}{a^2\left(2-a\right)}\right)\cdot\dfrac{6a}{a^2-6a+9}\)

\(=\left(\dfrac{a^2}{3a^2\cdot\left(a-2\right)}-\dfrac{3\left(2a-3\right)}{3a^2\cdot\left(a-2\right)}\right)\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{a^2-6a+9}{3a^2\cdot\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{\left(a-3\right)^2}{3a^2\left(a-2\right)}\cdot\dfrac{6a}{\left(a-3\right)^2}\)

\(=\dfrac{2}{a\left(a-2\right)}\)

b) Để P>0 thì \(\dfrac{2}{a\left(a-2\right)}>0\)

mà 2>0

nên \(a\left(a-2\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a>0\\a>2\end{matrix}\right.\\\left\{{}\begin{matrix}a< 0\\a< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)

Kết hợp ĐKXĐ, ta được: \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)

Vậy: Để P>0 thì \(\left[{}\begin{matrix}a>2\\a< 0\end{matrix}\right.\)

a: \(=\dfrac{2a^2-6a+3a+9-3a^2-3}{\left(a-3\right)\left(a+3\right)}\cdot\dfrac{a-3}{a+1}\)

\(=\dfrac{-a^2-3a+6}{\left(a+3\right)}\cdot\dfrac{1}{â+1}=\dfrac{-a^2-3a+6}{\left(a+3\right)\left(a+1\right)}\)

b: |a|=2

=>a=2 hoặc a=-2

Khi a=2 thì \(A=\dfrac{-2^2-3\cdot2+6}{\left(2+3\right)\left(2+1\right)}=\dfrac{-4}{15}\)

Khi a=-2 thì \(A=\dfrac{-\left(-2\right)^2-3\cdot\left(-2\right)+6}{\left(-2+3\right)\left(-2+1\right)}=-8\)

1 tháng 1 2023

em c.ơn nhiều ạ

 

a: \(A=\dfrac{-\left(x+2\right)^2-2x\left(x-2\right)-4x^2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-\left(x-2\right)\left(x-3\right)}{\left(x-3\right)^2}\)

\(=\dfrac{-x^2-4x-4-2x^2+4x-4x^2}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}\)

\(=\dfrac{-7x^2-4}{\left(x+2\right)}\cdot\dfrac{-1}{x-3}=\dfrac{7x^2+4}{\left(x+2\right)\left(x-3\right)}\)

b: Khi x=1/3 thì \(A=\dfrac{7\cdot\dfrac{1}{9}+4}{\left(\dfrac{1}{3}-2\right)\left(\dfrac{1}{3}-3\right)}=\dfrac{43}{40}\)

a: \(B=\dfrac{3x\left(2x-3\right)-4\left(2x+3\right)-4x^2+23x+12}{\left(2x-3\right)\left(2x+3\right)}\cdot\dfrac{2x+3}{x+3}\)

\(=\dfrac{6x^2-9x-8x-12-4x^2+23x+12}{2x-3}\cdot\dfrac{1}{x+3}\)

\(=\dfrac{2x^2+6x}{\left(2x-3\right)}\cdot\dfrac{1}{x+3}=\dfrac{2x}{2x-3}\)

b: 2x^2+7x+3=0

=>(2x+3)(x+2)=0

=>x=-3/2(loại) hoặc x=-2(nhận)

Khi x=-2 thì \(A=\dfrac{2\cdot\left(-2\right)}{-2-3}=\dfrac{-4}{-7}=\dfrac{4}{7}\)

d: |B|<1

=>B>-1 và B<1

=>B+1>0 và B-1<0

=>\(\left\{{}\begin{matrix}\dfrac{2x+2x-3}{2x-3}>0\\\dfrac{2x-2x+3}{2x-3}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3< 0\\\dfrac{4x-3}{2x-3}>0\end{matrix}\right.\Leftrightarrow x< \dfrac{3}{4}\)

30 tháng 4 2023

CẢM ƠN BẠN NHA