K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2020

                                                   Bài giải

\(\left(x-3\right)2-\left(x-3\right)\left(x+3\right)=0\)

\(\left(x-3\right)\left(x+3-2\right)=0\)

\(\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

\(\Rightarrow\text{ }x\in\left\{3\text{ ; }-1\right\}\)

\(\left(x-3\right).2-\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left(x-3\right)\left[2-\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(2-x-3\right)=0\Leftrightarrow\left(x-3\right)\left[\left(-1\right)-x\right]\). Xét 2 trường hợp

Xét 2 trường hợp. \(TH1:x-3=0\Leftrightarrow x=0+3=3\)

\(TH2:\left(-1\right)-x=0\Leftrightarrow x=\left(-1\right)-0=-1\). Vậy \(x\in\left\{-1;3\right\}\)

22 tháng 8 2021

\(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)\left(x+3-x+3\right)=0\Leftrightarrow6\left(x-3\right)=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Ta có: \(\left(x-3\right)\left(x+3\right)-\left(x-3\right)^2=0\)

\(\Leftrightarrow x^2-9-x^2+6x-9=0\)

\(\Leftrightarrow6x=18\)

hay x=3

\(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3-27+3x^2-12=0\)

\(\Leftrightarrow3x=40\)

hay \(x=\dfrac{40}{3}\)

a: Ta có: \(x\left(x-3\right)-x^2+5=0\)

\(\Leftrightarrow-3x+5=0\)

hay \(x=\dfrac{5}{3}\)

b: Ta có: \(x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

27 tháng 8 2021

chị có thể giải chi tiết hơn được không ạ

a, 4x2 - 49 = 0

⇔⇔ (2x)2 - 72 = 0

⇔⇔ (2x - 7)(2x + 7) = 0

⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72

b, x2 + 36 = 12x

⇔⇔ x2 + 36 - 12x = 0

⇔⇔ x2 - 2.x.6 + 62 = 0

⇔⇔ (x - 6)2 = 0

⇔⇔ x = 6

e, (x - 2)2 - 16 = 0

⇔⇔ (x - 2)2 - 42 = 0

⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0

⇔⇔ (x - 6)(x + 2) = 0

⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2

f, x2 - 5x -14 = 0

⇔⇔ x2 + 2x - 7x -14 = 0

⇔⇔ x(x + 2) - 7(x + 2) = 0

⇔⇔ (x + 2)(x - 7) = 0

⇔{x+2=0x−7=0⇔{x=−2x=7

29 tháng 11 2023

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

17 tháng 7 2015

a. x(x-2)+x-2=0

=> (x-2).(x+1)=0

=> x-2=0           hoặc x+1=0

=> x=2              hoặc x=-1

b. 5x(x-3)-x+3=0

=> 5x(x-3)-(x-3)=0

=> (x-3).(5x-1)=0

=> x-3=0         hoặc 5x-1=0

=> x=3            hoặc x=1/5

17 tháng 7 2015

a) x = 2

b) x = 3

19 tháng 11 2021

a. x( x+ 3)= 0 

⇔ x= 0 hoặc x+ 3= 0

⇔ x= 0          x = -3

b. x( 2x− 1)+ 2( 2x− 1) =0 

⇔ ( 2x− 1)(x+ 2) =0

⇔ 2x− 1 =0 hoặc  x+ 2 =0

⇔ 2x       =1          x      = -2

⇔   x       =\(\dfrac{1}{2}\)         x      = -2

 

21 tháng 12 2020

\( (x-3)^2-(x+3)^2=0 \\ (x-3+x+3)(x-3-x-3)=0 \\ 2x.(-6)=0 \\ x=0 \)