Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3-x^2=4x^2-8x+4\)
\(\Leftrightarrow x^2\left(x-1\right)=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-2=0\\x+2=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=2\\x=-2\end{array}\right.\)
x3-x2=4x2-8x+4
<=>x2(x-1)=4(x2-2x+1)
<=>x2(x-1)=4(x-1)2
<=>x2(x-1)-4(x-1)2=0
<=>(x-1)(x2-4x+4)=0
<=> (x-1)(x-2)2=0
<=>x-1=0 hoặc x-2=0
<=>x=1 hoặc x=2
#)Giải :
Bài 1 :
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(\Leftrightarrow144x^2+216x+81=144x^2-480x+400\)
\(\Leftrightarrow144x^2+216=144x^2-480x+319\)
\(\Leftrightarrow696x=319\)
\(\Leftrightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Leftrightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=-1\)
a) 9(4x + 3)2 = 16(3x - 5)2
=> [3(4x + 3)]2 - [4(3x - 5)]2 = 0
=> (12x + 9)2 - (12x - 20)2 = 0
=> (12x + 9 - 12x + 20)(12x + 9 + 12x - 20) = 0
=> 29.(24x - 11) = 0
=> 2x - 11 = 0
=> 2x = 11
=> x = 11 : 2 = 11/2
b) (x3 - x2)2 - 4x2 + 8x - 4 = 0
=> (x3 - x2)2 - (2x - 2)2 = 0
=> (x3 - x2 - 2x + 2)(x3 - x2 + 2x - 2) = 0
=> [x2(x - 1) - 2(x - 1)][x2(x - 1) + 2(x - 1)] = 0
=> (x2 - 2)(x - 1)(x2 + 2)(x - 1) = 0
=> (x2 - 2)(x2 + 2)(x - 1)2 = 0
=> x2 - 2 = 0
hoặc : x2 + 2 = 0
hoặc : (x - 1)2 = 0
=> x2 = 2
hoặc : x2 = -2 (vl)
hoặc : x - 1 = 0
=> \(\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
hoặc : x = 1
Vậy ...
c) x5 + x4 + x3 + x2 + x + 1 = 0
=> x4(x +1) + x2(x + 1) + (x + 1) = 0
=> (x4 + x2 + 1)(x + 1) = 0
=> \(\orbr{\begin{cases}x^4+x^2+1=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^4+x^2=-1\left(vl\right)\\x=-1\end{cases}}\) (vì x4 \(\ge\)0 \(\forall\)x; x2 \(\ge\)0 \(\forall\)x => x4 + x2 \(\ge\)0 \(\forall\)x)
=> x = -1
8x2+30x+7=0
8x2+16x+14x+7=0
8x(x+2) +7(x+2)=0
(8x+7)(x+2)=0
=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)
Bài 1:
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(114x^2+216x+81=114x^2-480x+400\)
\(144x^2+216x=144x^2-480x+400-81\)
\(114x^2+216=114x^2-480x+319\)
\(696x=319\)
\(\Rightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Rightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x=-1\)
Bài 2:
a) \(5x^3-7x^2-15x+21=0\)
\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Rightarrow x=\frac{7}{5}\)
b) \(\left(x-3\right)^2=4x^2-20x+25\)
\(x^2-6x+9-25=4x^2-20x+25\)
\(x^2-6x+9=4x^2-20x+25-25\)
\(x^2-6x-16=4x^2-20x\)
\(x^2+14x-16=4x^2-4x^2\)
\(-3x^2+14x-16=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)
\(x^2-2x=x-4\)
\(x^2-2x=x-4+4\)
\(x^2-2x=x-x\)
\(x^2-3x=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)
\(-48x^2+56x-24=-24\)
\(-48x^2+56x=-24+24\)
\(-48x^2+56=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)
mình ko chắc
a
4x2--25=0
=> (2x)22 --52 =0
=> (2x-5)(2x+5)=0
\(\orbr{\begin{cases}2x-5=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}X=\frac{5}{2}\\X=\frac{-5\:\:. \:\:\:\:\:\:\:\:\:\:TT}{2}\end{cases}Mình\:}\)
\(4x^2=25\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\sqrt{\frac{25}{4}}\) \(=\frac{5}{2}\)
\(\left(x^3-x^2\right)^2-\left(4x^2-8x+4\right)=0\)
= \(\left(x^3-x^2\right)^2-\left(2x-2\right)^2=0\)
=(\(\left(x^3-x^2-2x+2\right)\left(x^3-x^2+2x-2\right)=0\)
=\(\left[x^2\left(x-1\right)-2\left(x-1\right)\right]\) \(\left[x^2\left(x-1\right)+2\left(x-1\right)\right]\)=0
=\(\left(x-1\right)\left(x^2-2\right)\left(x-1\right)\left(x^2+2\right)\) = 0
= \(\left(x-1\right)\left(x^2-2\right)\left(x^2+2\right)=0\)
=\(\left(x-1\right)\left(x^4-4\right)\) = 0
=> \(x-1=0\) hoặc \(x^4-4=0\)
=> \(x=1\) hoặc \(x=\pm\sqrt{2}\)
câu 2
a)\(\left(3x^2\right)^3-\left(2x\right)^3\)
= \(\left(3x^2-2x\right)\left(9x^4-54x^5+36x^4-4x^2\right)\)
= \(x\left(3x-2\right)\left(9x^4-54x^5+36x^4-4x^2\right)\)
may be wrong , but chawsc k nhiều , chỗ nào k hiểu ib hỏi mk sai nha <3
x3-x2=4x2-8x+4
<=>x2(x-1)=4(x2-2x+1)
<=>x2(x-1)=4(x-1)2
<=>x2(x-1)-4(x-1)2=0
<=>(x-1)(x2-4x+4)=0
<=> (x-1)(x-2)2=0
<=>x-1=0 hoặc x-2=0
<=>x=1 hoặc x=2
x3 - x2 = 4x2 - 8x + 4
x3 - x2 - 4x2 + 8x - 4 = 0
x2(x - 1) - 4(x - 1)2 = 0
(x - 1)(x - 2)(x + 2) = 0
=> x - 1 = 0 hoặc x - 2 = 0 hoặc x + 2 = 0
=> x = 1 hoặc x = + 2