\(x^2\)- 6x = 0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2024

`x^2-6x=0`

`<=>x(x-6)=0`

TH1: `x =0 `

TH2: `x - 6=0<=>x=6`

Vậy: ... 

29 tháng 6 2024

\(x^2-6x=0\Leftrightarrow x\left(x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

23 tháng 10 2016

a) \(x\left(x^2-49\right)=0\)

\(\Leftrightarrow x\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-7=0\\x+7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=7\\x=-7\end{array}\right.\)

b) \(x^2+x-6=0\)

\(\Leftrightarrow x^2+3x-2x-6=0\)

\(\Leftrightarrow x\left(x+3\right)-2\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x-2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-3\end{array}\right.\)

c) \(x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-6=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=6\end{array}\right.\)

23 tháng 10 2019

x2 - 5x - 36 = 0

=> x2 - 9x + 4x - 36 = 0

=> x(x - 9) + 4(x - 7) = 0

=> (x + 4)(x - 7) = 0

=> \(\orbr{\begin{cases}x+4=0\\x-7=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-4\\x=7\end{cases}}\)

6x2 - (2x + 5)(3x - 2) = -12

=> 6x2 - 6x2 + 4x - 15x + 10 = -12

=> -11x = -22

=> x = 2

x2 - 25 = 6x - 9

=> x2 - 25 - 6x + 9 = 0

=> x2 - 6x - 16 = 0

=> x2 - 8x + 2x - 16 = 0

=> x(x - 8) + 2(x - 8) = 0

=> (x + 2)(x - 8) = 0

=> \(\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)

12 tháng 8 2019

b) \(7x\left(x-2\right)-\left(x-2\right)=0\) 

<=>  \(\left(7x-1\right)\left(x-2\right)=0\)

=> x=1/7  hoặc x=2

c) <=>  (2x-1)3   =0 

=> x=1/2

d)<=>  \(\left(2x-3\right)\left(2x+3\right)-x\left(2x-3\right)=0\)

<=>  \(\left(2x-3\right)\left(x+3\right)=0\)

=> x=3/2  hoặc x=-3

e) <=>\(x^2\left(x+5\right)+9\left(x+5\right)=0\)

<=> \(\left(x+5\right)\left(x^2+9\right)=0\)

=> x=-5

f) \(x^3-6x^2-x+30=0\)

<=>\(x^3+2x^2-8x^2-16x+15x+30=0\)

<=>\(x^2\left(x+2\right)-8x\left(x+2\right)+15\left(x+2\right)=0\)

<=>\(\left(x+2\right)\left(x^2-5x-3x+15\right)=0\)

<=> \(\left(x+2\right)\left(x-5\right)\left(x-3\right)=0\)

=> x=-2 hoặc x=5 hoặc x=3

18 tháng 9 2018

a,x2+6x-7=0

=>x2+7x-x-7=0

=>(x^2+7x)-(x+7)=0

=>x(x+7)-(x+7)=0 =>(x+7)(x-1)=0

=>\(\orbr{\begin{cases}x+7=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=1\end{cases}}}\)

b, x^3-2x^2-5x+6=0

=>x(x^2-2x-5+6)=0

=>x(x^2-2x+1)=0\(^{\orbr{\begin{cases}x=0\\\left(x-1^2\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

c, 2x^2-5x+3=0

=>2x^2-2x-3x+3=0

18 tháng 9 2018

\(x^3-19x-30=0\)

\(\Rightarrow x^3+5x^2+6x-5x^2-25x-30=0\)

\(\Rightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x^2+2x+3x+6\right)=0\)

\(\Rightarrow\left(x-5\right)[x\left(x+2\right)+3\left(x+2\right)]=0\)

\(\Rightarrow\left(x-5\right)\left(x+3\right)\left(x+2\right)=0\)

\(\Rightarrow\hept{\begin{cases}x-5=0\\x+3=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\x=-3\\x=-2\end{cases}}\)

9 tháng 8 2020

a) Ta có : x3 - x = 0

=> x(x2 - 1) = 0

=> \(\orbr{\begin{cases}x=0\\x^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

Vậy \(x\in\left\{0;1;-1\right\}\)

b) x2 + 4x = 0

=> x(x + 4) = 0

=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

Vậy \(x\in\left\{0;-4\right\}\)

c) 9x2 - 1 = 0

=> 9x2 = 1

=> x2 = \(\frac{1}{9}\)

=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{1}{3}\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{3};-\frac{1}{3}\right\}\)

d) 5x2 - 10x + 5 = 0

=> 5x2 - 5x - 5x + 5 = 0

=> 5x(x - 1) - 5(x - 1) = 0

=> 5(x - 1)2 = 0

=> (x - 1)2 = 0

=> x - 1 = 0

=> x = 1

e) x2 + 6x + 5 = 0

=> x2 + 6x + 9 - 4 = 0

=> (x + 3)2 = 4

=> \(\orbr{\begin{cases}x+3=2\\x+3=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-5\end{cases}}\)

Vậy \(x\in\left\{-1;-5\right\}\)

9 tháng 8 2020

a, \(x^3-x=0\Leftrightarrow x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b, \(5x^2-10x+5=0\)

\(\Leftrightarrow5x\left(x-1\right)^2=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

27 tháng 8 2017

\(a,\)\(x^4-4x^3+4x^2=0\)

\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)

\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(b,\)\(x^2+5x+4=0\)

\(\Leftrightarrow x^2+x+4x+4=0\)

\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)

\(c,\)\(9x-6x^2-3=0\)

\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)

\(\Leftrightarrow2x^2-3x+1=0\)

\(\Leftrightarrow2x^2-2x-x+1=0\)

\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)

\(d,\)\(2x^2+5x+2=0\)

\(\Leftrightarrow2x^2+4x+x+2=0\)

\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)

16 tháng 10 2018

a,\(x^3-x=0\Rightarrow x\left(x^2-1\right)=0\Rightarrow x\left(x+1\right)\left(x-1\right)=0\)

b,\(x^2-2x+x-2=0\Rightarrow x\left(x-2\right)+\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+1\right)=0\)

c,\(x^2-6x+8=x^2-4x-2x+8=x\left(x-4\right)-2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)

16 tháng 10 2018

\(x^3-x=0\)

\(\Leftrightarrow x\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

x=0 hoặc x-1=0=> x=1 hoặc x+1=0 => x=-1

\(x^2-2x+x-2=0\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

\(x^2-6x+8=0\)

\(\Leftrightarrow x^2-2x-4x+8=0\)

\(\Leftrightarrow x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

a, 2x(1-3)=0

=>...................

hk tốt

23 tháng 12 2018

a) \(2x^2-6x=0\)

\(2x\left(x-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)