Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2.\left(x-4\right)-x+3=0\)
\(2x-8-x+3=0\)
\(x-5=0\)
\(x=5\)
\(x^2-25-x-5=0\)
\(\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(x-5-1\right)=0\)
\(\left(x+5\right)\left(x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
a) \(5\left(x+7\right)-12x=15\)
\(5x+35-12x=15\)
\(-7x=15-35\)
\(-7x=-20\)
\(x=\frac{20}{7}\)
vay \(x=\frac{20}{7}\)
b) \(x^2-25-\left(x+5\right)=0\)
\(x^2-5^2-\left(x+5\right)=0\)
\(\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(x-5-1\right)=0\)
\(\left(x+5\right)\left(x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
vay \(\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
c) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\left(2x-1\right)\left(2x-1\right)-\left(\left(2x\right)^2-1^2\right)=0\)
\(\left(2x-1\right)\left(2x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)
\(\left(2x-1\right)\left(2x-1-2x-1\right)=0\)
\(-2.\left(2x-1\right)=0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
vay \(x=\frac{1}{2}\)
d) \(x^2.\left(x^2+4\right)-x^2-4=0\)
\(x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\left(x^2-1\right)\left(x^2+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1hoacx=-1\\kotontai\end{cases}}\)
vay \(x=1\)hoac \(x=-1\)
1) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Leftrightarrow\left(2x-5\right).-2=0\)
\(\Leftrightarrow-4x+10=0\)
\(\Leftrightarrow-4x=-10\)
\(\Leftrightarrow x=\frac{5}{2}.\)
Vậy \(S=\left\{\frac{5}{2}\right\}\)
2)\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right).\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\)
\(\Leftrightarrow x+3=0\)hoặc \(x=0\)hoặc \(x-2=0\)
\(\Leftrightarrow x=-3\)hoặc \(x=0\)hoặc \(x=2\)
Vậy \(S=\left\{-3;0;2\right\}\)
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
a: \(x\in\left\{0;25\right\}\)
c: \(x\in\left\{0;5\right\}\)
\(\left(x^2-25\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left[x^2-5^2\right]^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left[\left(x+5\right)\left(x-5\right)\right]^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2\left(x-5\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x+5\right)^2\left[\left(x-5\right)+1\right]\left[\left(x-5\right)-1\right]=0\)
\(\Leftrightarrow\left(x+5\right)^2\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\x-4=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x=4\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\\x=6\end{matrix}\right.\)
Vậy: \(S=\left\{-5;6;4\right\}\)
Ta có ( x2 - 25 )2 - ( x + 5 )2 = 0
Vì ( x2 - 25 )2 ≥ 0 ; ( x + 5 )2 ≥ 0
⇒ ( x2 - 25 )2 - ( x + 5 )2 ≥ 0
Dấu " = " xảy ra khi
\(\left[{}\begin{matrix}\left(x^2-25\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm5\\x=-5\end{matrix}\right.\Rightarrow x=-5\)
Vậy x = 5