Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
a) 5x(x - 1) = x - 1
5x(x - 1) - (x - 1) = 0
(x - 1) (5x - 1) = 0
TH1: x - 1 = 0
x = 1
TH2: 5x - 1 = 0
5x = 1
x = 1/5
Vay x = 1 hoac x = 1/5.
b) 2(x + 5) - x2 - 5x = 0
2(x + 5) - x(x + 5) = 0
(x + 5) (2 - x) = 0
TH1: x + 5 = 0
x = -5
TH2: 2 - x = 0
x = 2
Vay x = -5 hoac x = 2
a) x(x-1) - (x+1)(x+2) = 0
x\(^2\)- x -x\(^{^2}\)-2x +x+2=0
-2x+2=0
-2x=0+2
-2x=2
x=-1
Vậy x bằng -1
\(a,2\left(x+5\right)-x^2-5x=0\)
\(< =>2x+10-x^2-5x=0\)
\(< =>-x^2-3x+10=0\)
\(< =>-\left(x^2+3x+\frac{9}{4}\right)+\frac{49}{4}=0\)
\(< =>-\left(x+\frac{3}{2}\right)^2=-\frac{49}{4}\)
\(< =>\left(x+\frac{3}{2}\right)^2=\frac{49}{4}< =>\orbr{\begin{cases}x+\frac{3}{2}=\sqrt{\frac{49}{4}}\\x+\frac{3}{2}=-\sqrt{\frac{49}{4}}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=\frac{7}{2}-\frac{3}{2}=\frac{4}{2}=2\\x=-\frac{7}{2}-\frac{3}{2}=-\frac{10}{2}=-5\end{cases}}\)
b, Đật x = y+5/3 khi đó phương trình trở thành
\(y^3-\frac{37}{3}y+\frac{476}{27}=0\)
Đặt \(y=u+v\)sao cho uv=37/9 thế vào ta được phương trình mới sau ta được
\(u^3+v^3+\left(3uv-\frac{37}{3}\right)\left(u+v\right)+\frac{426}{27}=0\)
Khi đó ta có hệ sau : \(\hept{\begin{cases}u^3+v^3=-\frac{426}{27}\\u^3v^3=\frac{50653}{729}\end{cases}}\)
Theo Vi ét u^3 và v^3 là 2 nghiệm của pt \(x^2-\frac{426}{27}x+\frac{50653}{729}=0\)
Đến đây delta phát rồi tìm ngược lại là xong :))))
mình dùng cardano nhưng làm trong nháp xong gửi nên chắc chắc bạn sẽ không hiểu được :V
làm luôn câu cuối nhé ^^
\(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(4x^2-4x+1\right)-\left(x^2+6x+9\right)=0\)
\(\Leftrightarrow4x^2-4x+1-x^2-6x-9=0\)
\(\Leftrightarrow3x^2-10x-8=0\)
\(\Leftrightarrow3\left(x^2-\frac{10}{3}x+\frac{25}{9}\right)-\frac{147}{9}=0\)
\(\Leftrightarrow3\left(x-\frac{5}{3}\right)^2=\frac{147}{9}\Leftrightarrow\left(x-\frac{5}{3}\right)^2=\frac{147}{27}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{5}{3}=\sqrt{\frac{147}{27}}\\x-\frac{5}{3}=-\sqrt{\frac{147}{27}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{147}{27}}+\frac{5}{3}\\x=-\sqrt{\frac{147}{27}}+\frac{5}{3}\end{cases}}\)
a) \(2.\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2.\left(x+5\right)-x.\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
Vậy \(S=\left\{-5,2\right\}\)
b) \(x^3-5x^2-4x+20=0\)
\(\Leftrightarrow x^2\left(x-5\right)-4.\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}\)
Vậy \(S=\left\{5,\pm2\right\}\)
c) \(\left(2x-1\right)^2-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(2x-1-x-3\right)\left(2x-1+x+3\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=-\frac{3}{2}\end{cases}}\)
Vậy \(S=\left\{4,-\frac{3}{2}\right\}\)
b, Ta có \(x+1=\left(x+1\right)^2\) \(\Rightarrow x+1=x^2+2x+1\)
\(\Rightarrow x^2+2x+1-\left(x+1\right)=0\Rightarrow\)\(x^2+2x+1-x-1=0\)
\(\Rightarrow x^2+x=0\Rightarrow x\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
Vậy x = 0 hoặc x = -1
c, Ta có : \(x^3+x=0\Rightarrow x\left(x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=-1\end{cases}}}\) Trường hợp x2 = -1 ( vô lý)
Vì \(x^2\ge0\) với mọi x. => x =0
Vậy x = 0
1111