Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)
bạn ơi trả lời được câu này kông
( x + 1 ) + ( x - 3 ) + ( x + 5 ) + ............ + ( x +9) = 35
a.(x+x).(1+2/3)
2x=(1+2/3)
2x=(5/3)
x=5/3:2
x=5/6
x=0,9
Vậy 0,9>0
\(\left(x+1\right)\left(x+\frac{2}{3}\right)>0\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x+\frac{2}{3}>0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x>-\frac{2}{3}\end{cases}\Rightarrow}x>-1}\)
\(\Rightarrow\hept{\begin{cases}x+1< 0\\x+\frac{2}{3}< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x< -\frac{2}{3}\end{cases}\Rightarrow}x< -\frac{2}{3}}\)
P/s : Bao giwof mk làm CTV các bạn nhớ vote cho mk nhé
\(a,\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow}-1< x< 2\left(tm\right)}\)
\(\Rightarrow\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}\Rightarrow}2< x< -1\left(KTM\right)}\)
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
a, \(\left(x-1\right).\left(x+2\right)\)\(>0\Rightarrow\orbr{\begin{cases}x-1< 0;x+2< 0\left(loai\right)\Rightarrow x< 1\\x-1>0;x+2>0\Rightarrow x>1;x>-2\end{cases}}\)
=> -2 < x < 1
Câu b và câu d làm tương tự nha bạn(Câu b thì xét khác dấu)
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
1.x2 + 1 > 0
=> x thuộc Z
(x2 + 1).(2x - 5) > 0
+) x2 + 1 > 0 (luôn đúng); 2x - 5 > 0
=> 2x - 5 > 0
=> 2x > 5
=> x > 2
+) x2 + 1 < 0 (vô lí); 2x - 5 < 0
Vậy x > 2.
x2 + 2x < 0
=> x.(x + 2) < 0
+) x < 0; x + 2 > 0
=> x < 0; x > -2
=> -2 < x < 0
=> x = -1
+) x > 0; x + 2 < 0
=> x > 0; x < -2
=> 0 < x < -2 (vô lí)
Vậy x = -1.
2. |a| = 1/3 => a = 1/3 hoặc a = -1/3
+) Với a = 1/3; b = 0,25
=> \(C=\frac{5.\frac{1}{3}}{3}-\frac{3}{0,25}=\frac{5}{9}-12=-\frac{103}{9}\)
+) Với a = -1/3; b = 0,25
=> \(C=\frac{5.\left(-\frac{1}{3}\right)}{3}-\frac{3}{0,25}=-\frac{5}{9}-12=-\frac{113}{9}\)
Giải
\(\left(x-3\right)\left(x+\frac{1}{2}\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\\x+\frac{1}{2}\end{cases}}\) cùng dấu
\(TH1 :\) \(\hept{\begin{cases}x-3\\x+\frac{1}{2}\end{cases}}\)cùng âm
\(\Leftrightarrow\hept{\begin{cases}x-3< 0\\x+\frac{1}{2}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x< \frac{-1}{2}\end{cases}}\Leftrightarrow x< \frac{-1}{2}\left(1\right)\)
\(TH2:\)\(\hept{\begin{cases}x-3\\x+\frac{1}{2}\end{cases}}\) cùng dương
\(\Leftrightarrow\hept{\begin{cases}x-3>0\\x+\frac{1}{2}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x>\frac{-1}{2}\end{cases}}\Leftrightarrow x>3\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) suy ra \(\hept{\begin{cases}x< \frac{1}{2}\\x>3\end{cases}}\)
@ NCTK@ dòng cuối cùng nó là dấu ngoặc vuông ko phải ngoặc nhọn em nhé!\(\orbr{\begin{cases}x>3\\x< -\frac{1}{2}\end{cases}}\)