K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x+\frac{3}{5}=x-\frac{1}{7}\)

=>  \(x+\frac{21}{35}=x-\frac{5}{35}\)

=> \(x-x+\frac{21}{35}+\frac{5}{35}=0\)

=>  \(0x=-\frac{26}{5}\)

Vậy ko có giá trị x nào thoả mãn bài toán

20 tháng 10 2021

\(\frac{x+3}{5}=\frac{x-1}{7}\)

\(\Leftrightarrow7\left(x+3\right)=5\left(x-1\right)\)

\(\Leftrightarrow7x+21=5x-5\)

\(\Leftrightarrow7x-5x=-5-21\)

\(\Leftrightarrow2x=-26\)

\(\Leftrightarrow x=-13\)

15 tháng 2 2020

\(\frac{x+19}{3}+\frac{x+13}{5}=\frac{x+7}{7}+\frac{x+1}{9}\)

\(=>\frac{x+19}{3}+3+\frac{x+13}{5}+3=\frac{x+7}{7}+3+\frac{x+1}{9}+3\)

\(=>\frac{x+28}{3}+\frac{x+28}{5}=\frac{x+28}{7}+\frac{x+28}{9}\)

\(=>\frac{x+28}{3}+\frac{x+28}{5}-\frac{x+28}{7}-\frac{x+28}{9}=0\)

\(=>\left(x+28\right)\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)=0\)

Do :\(\frac{1}{3}+\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\ne0\)

\(=>x+28=0\)

\(=>x=-28\)

Vậy nghiệm của phương trình trên là : -28

15 tháng 2 2020

Thks nha

11 tháng 2 2020

Đề sai ! Sửa nhé :

a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne\pm2\end{cases}}\)

\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(\Leftrightarrow A=\left(\frac{2}{x+2}-\frac{4}{\left(x+2\right)^2}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x-2}\right)\)

\(\Leftrightarrow A=\frac{2\left(x+2\right)-4}{\left(x+2\right)^2}:\frac{2-\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow A=\frac{2x+4-4}{\left(x+2\right)^2}.\frac{\left(x+2\right)\left(x-2\right)}{-x}\)

\(\Leftrightarrow A=\frac{2x\left(x-2\right)}{-x\left(x+2\right)}\)

\(\Leftrightarrow A=-\frac{2\left(x-2\right)}{x+2}\)

b) Để \(A\le-2\)

\(\Leftrightarrow-\frac{2\left(x-2\right)}{x+2}\le-2\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{x+2}\ge2\)

\(\Leftrightarrow\frac{x-2}{x+2}\ge1\)

\(\Leftrightarrow x-2\ge x+2\)

\(\Leftrightarrow-2\ge2\)(ktm)

Vậy để \(A\le-2\Leftrightarrow x\in\varnothing\)

11 tháng 2 2020

a.

\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)

\(A=\left(\frac{2.\left(x^2+8\right)}{\left(x+2\right).\left(x^2+8\right)}-\frac{4\left(x+2\right)}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{1}{2-x}\right)\)

\(A=\left(\frac{2x^2+8-4x+8}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-1}{x-2}\right)\)

\(A=\left(\frac{2x\left(x-2\right)+16}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2}{\left(x-2\right)\left(x+2\right)}+\frac{-x-2}{\left(x-2\right)\left(x+2\right)}\right)\)

\(A=\left(\frac{2x\left(x-2\right)+16}{\left(x+2\right)\left(x^2+8\right)}\right):\left(\frac{2-x-2}{\left(x-2\right)\left(x+2\right)}\right)\)

\(A=\left(\frac{\left(2x\left(x-2\right)+16\right)\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x^2+8\right)\left(-x\right)}\right)\)

\(A=\frac{\left(2x\left(x-2\right)+16\right)\left(x-2\right)}{\left(x^2+8\right)\left(-x\right)}\)

\(A=\frac{\left(2x^2-4x+16\right)\left(x-2\right)}{\left(x^2+8\right)\left(-x\right)}\)

\(A=\frac{\left(2x^3-4x-4x-4x^2+8x+16x-32\right)}{-x^3+8}\)

\(A=\frac{2x^3-4x^2+16x-32}{-x^3+8}\)

21 tháng 10 2018

1.

-(2*y-x+2)*(2*y+x)

2.

(x^2-2)*(x^2+2*x+2)

3.

x^4-2*x^3-3*x^2-4

4.

-(x-1)*(y-1)*(x*y+y+x)

5.

-(x^3+6*x^2+1)

1.X2-2X-4y2-4y

=x2-2x+1-(4y2+4y+1)

=(x+1)2-(2y+1)2

=>(x+1-2y-1)(x+1+2y+1)

=(x-2y)(x+2y+2)

2.x4+2x3-4x-4

=(x2)2-22+2x3-4x

=(x2-2)(x2+2)+2x(x2-2)

=(x2-2)(x2+2+2x)

19 tháng 10 2019

1) \(x\left(2^2-3\right)-x^2\left(5x+1\right)+x^2\)

\(=x-5x^3-x^2+x\)

\(=2x-5x^3-x^2\)

2) \(\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=\left(6x^2+23x-55\right)-\left(6x^2+23x+21\right)\)

\(=-76\)

19 tháng 10 2019

Làm lại câu 1

\(x\left(2^2-3\right)-x^2\left(5x+1\right)+x^2\)

\(=x-5x^3-x^2+x^2\)

\(=x-5x^3\)

mk giải từng nha == tại vì mk sợ nhiều qus bị troll 

\(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(27x^3+18x^2+12x-18x^2-12x-8-3x\left(9x^2-3x+1\right)+\left(9x^2-3x+1\right)=x-4\)

\(27x^3-8-3\left(9x^2-3x+1\right)+9x^2-3x+1=x-4\)

\(27x^3-7-3x\left(9x^2-3x+1\right)+9x^2-3x=x-4\)

\(27x^3-7-27x^3+9x^2-3x+9x^2-3x=x-4\)

\(-7+18x^2-6x=x-4\)

\(3-18x^2+7x=0\)

\(x=\frac{-7+\sqrt{265}}{-36};\frac{-7-\sqrt{265}}{-36}\)

\(9\left(2x+1\right)=4\left(x-5\right)^2\)

\(18x+9=4x^2-40x+100\)

\(18x+9-4x^2+40x-100=0\)

\(58x-91-4x^2=0\)

\(x=\frac{29-3\sqrt{53}}{4};\frac{29+3\sqrt{53}}{4}\)

Câu hỏi của Trịnh Minh Châu - Toán lớp 8 - Học toán với OnlineMath

23 tháng 7 2018

ai đó giúp tôi giải bài này với

6 tháng 9 2020

a) \(2\left(x-1\right)^2+\left(x+3\right)^2=3\left(x-2\right)\left(x+1\right)\)

\(\Leftrightarrow2x^2-4x+2+x^2+6x+9=3x^2-3x-6\)

\(\Leftrightarrow5x=-17\)

\(\Rightarrow x=-\frac{17}{5}\)

b) \(\left(x+2\right)^2-2\left(x-3\right)=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+4x+4-2x+6=x^2+2x+1\)

\(\Leftrightarrow10=1\)

=> vô nghiệm 

c) \(\left(x-1\right)^2+\left(x-2\right)^2=2\left(x+4\right)^2-\left(22x+27\right)\)

\(\Leftrightarrow x^2-2x+1+x^2-4x+4=2x^2+8x+8-22x-27\)

\(\Leftrightarrow8x=-24\)

\(\Rightarrow x=-3\)

6 tháng 9 2020

a) 2( x - 1 )2 + ( x + 3 )2 = 3( x - 2 )( x + 1 )

<=> 2( x2 - 2x + 1 ) + x2 + 6x + 9 = 3( x2 - x - 2 )

<=> 2x2 - 4x + 2 + x2 + 6x + 9 = 3x2 - 3x - 6

<=> 2x2 - 4x + x2 + 6x - 3x2 + 3x = -6 - 2 - 9

<=> 5x = -17

<=> x = -17/5

b) ( x + 2 )2 - 2( x - 3 ) = ( x + 1 )2

<=> x2 + 4x + 4 - 2x + 6 = x2 + 2x + 1

<=> x2 + 4x - 2x - x2 - 2x = 1 - 4 - 6

<=> 0x = -9 ( vô lí )

Vậy phương trình vô nghiệm

c) ( x - 1 )2 + ( x - 2 )2 = 2( x + 4 )2 - ( 22x + 27 )

<=> x2 - 2x + 1 + x2 - 4x + 4 = 2( x2 + 8x + 16 ) - 22x - 27

<=> 2x2 - 6x + 5 = 2x2 + 16x + 32 - 22x - 27

<=> 2x2 - 6x - 2x2 - 16x + 22x = 32 - 27 - 5

<=> 0x = 0 ( đúng ∀ x ∈ R )

Vậy phương trình nghiệm đúng ∀ x ∈ R