Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(\Rightarrow\left(x-2\right)\left(x-2\right)-\left[x^2-3^2\right]=6\)
\(\Rightarrow\left(x^2-4x+4\right)-x^2+9=6\)
\(\Rightarrow-4x+\left(4+9\right)=6\)
\(\Rightarrow-4x+13=6\)
\(\Rightarrow-4x=6-13\)
\(\Rightarrow-4x=-7\)
\(\Rightarrow x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
~ Ủng hộ nhé
( x - 2 )2 - ( x - 3 ) ( x + 3 ) = 6
x2 - 4x + 4 - x2 + 9 = 6
( x2 - x2 ) - 4x + ( 4 + 9 ) = 6
-4x + 13 = 6
-4x = 6 - 13
-4x = -7
x = 7/4
d. (x - 3)(x2 + 3x + 9) + x(x + 2)(2 - x) = 1
<=> x3 - 9 + (x2 + 2x)(2 - x) = 1
<=> x3 - 9 + 2x2 - x3 + 4x - 2x2 = 1
<=> 4x = 10
<=> x = \(\dfrac{10}{4}=\dfrac{5}{2}\)
d)(x - 3)(x^2 + 3x + 9) + x(x + 2)(2 - x) = 1
\(<=> x^3-27-x(x^2-4)=1\)
\(<=> x^3-27-x^3-4x=1<=>-4x=28<=> x=-7\)
=> ptrình có tập nghiệm S={-7}
e) (x + 1)^3 - (x - 1)^3 - 6(x - 1)^2 = -19
\(<=> x^3+3x^2+3x+1-(x^3-3x^2+3x-1)-6(x^2-2x+1)+19=0\)
\(<=>x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)
\(<=>12x=15<=>x=12/15 \)
=> ptrình có tập nghiệm S={12/15}
a: Ta có: \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x+2\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-2x^2+x+2x^2-4x+2\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x-2-3x^2+9=5\)
\(\Leftrightarrow6x=-3\)
hay \(x=-\dfrac{1}{2}\)
b: Ta có: \(\left(x+1\right)^3+\left(x-1\right)^3=\left(x+2\right)^3+\left(x-2\right)^3\)
\(\Leftrightarrow x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)
\(\Leftrightarrow2x^3+6x=2x^3+24x\)
\(\Leftrightarrow x=0\)
c: Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-1=-10\)
\(\Leftrightarrow12x=-11\)
hay \(x=-\dfrac{11}{12}\)
a: Ta có: \(2x\left(x-1\right)-2x^2=-6\)
\(\Leftrightarrow2x^2-2x-2x^2=-6\)
\(\Leftrightarrow x=3\)
b: Ta có: \(2x\left(x-3\right)+5\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
\(\left(x-2\right)^3+6\left(x+1\right)^2-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x^3+12=0\)
\(\Leftrightarrow24x+10=0\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(x^2-4x+4-x^2+9=6\)
\(-4x+13=6\)
\(-4x=6-13\)
\(-4x=-7\)
\(x=\frac{-7}{-4}\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)
Bài giải
\(x^2-4x+4-x^2+9=6\)
\(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=6\)
\(-4x+13=6\)
\(-4x=6-13\)
\(-4x=-7\)
\(x=\frac{-7}{-4}\)
\(x=\frac{7}{4}\)
Vậy \(x=\frac{7}{4}\)