Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt t = \(\frac{1}{2004y}\)
Bài toán được đưa về tìm x để t bé nhất :
Ta có \(t=\frac{\left(x+2004\right)^2}{2004x}=\frac{x^2+2.2004x+2004^2}{2004x}=\frac{x}{2004}+2+\frac{2004}{x}=\frac{x^2+2004^2}{2004x}+2\) ( 1 )
Ta thấy : Theo bất đẳng thức Côsi cho 2 số dương ta có :
\(x^2+2004^2\ge2.2004.x\Rightarrow\frac{x^2+2004^2}{2004x}\ge2\) ( 2 )
Dấu " = " xảy ra khi x = 2004
Từ ( 1 ) và ( 2 ) \(\Rightarrow t\ge4\Rightarrow\) giá trị bé nhất của t = 4 khi x = 2004
Vậy \(y_{max}=\frac{1}{2004t}=\frac{1}{8016}\) . Khi \(x=2004\)
Chúc bạn học tốt !!!
\(C=x^2-8x+20\\ C=x^2-8x+16+4\\ C=\left(x-4\right)^2+4\ge4\)
\(MinC=0\Leftrightarrow x-4=0\Leftrightarrow x=4\\ MinC=4\Leftrightarrow x=4\)
a, Ta có:
\(\left|x-0,3\right|=0,8\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-0,3=0.8\\x-0,3=-0,8\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=1,1\\x=-0,5\end{array}\right.\)
Vậy x = 1,1 hoặc x = -0,5
b) Ta có:
\(M=\left|x-20\right|+\left|x-2004\right|=\left|x-20\right|+\left|2004-x\right|\ge x-20+2004-x=1984\)
Dấu "=" xảy ra \(\Leftrightarrow\begin{cases}x-20\ge0\\2004-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge20\\x\le2004\end{cases}\)\(\Leftrightarrow20\le x\le2004\)
Vậy \(M=\left|x-20\right|+\left|x-2004\right|\) đạt GTNN \(\Leftrightarrow20\le x\le2004\)
a. x- 0.3 = 0.8
=> x=1.1