Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có | x + 2/5 | ≥ 0 ∀ x
| 2y - 1/3 | ≥ 0 ∀ y
=> | x + 2/5 | + | 2y - 1/3 | ≥ 0 ∀ x, y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x+\frac{2}{5}=0\\2y-\frac{1}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{5}\\y=\frac{1}{6}\end{cases}}\)
Vậy x = -2/5 ; y = 1/6
\(\left|x+\frac{2}{5}\right|+\left|2y-\frac{1}{3}\right|=0\)
\(\orbr{\begin{cases}\left|x+\frac{2}{5}\right|=0\\\left|2y-\frac{1}{3}\right|=0\end{cases}}\)
\(\orbr{\begin{cases}x=0-\frac{2}{5}\\2y=0+\frac{1}{3}\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{2}{5}\\2y=\frac{1}{3}\end{cases}}\)
\(x=\frac{1}{3}:2\)
\(x=\frac{2}{3}\)
vậy \(\orbr{\begin{cases}x=-\frac{2}{5}\\x=\frac{2}{3}\end{cases}}\)
Ta có : \(\left(3x-\frac{y}{5}\right)^2\ge0;\left(2y+\frac{3}{7}\right)^2\ge0\)
\(=>\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2\ge0\)
Mà \(\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\2y+\frac{3}{7}=0\end{cases}}< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\y=-\frac{3}{14}\end{cases}}\)
\(< =>\hept{\begin{cases}x=-\frac{1}{70}\\y=-\frac{3}{14}\end{cases}}\)
Ta có : \(\left(x+y-\frac{1}{4}\right)^2\ge0;\left(x-y+\frac{1}{5}\right)^2\ge0\)
Cộng theo vế ta được : \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2\ge0\)
Mà \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2=0\)nên dấu "=" xảy ra
\(< =>\hept{\begin{cases}y+x=\frac{1}{4}\\y-x=\frac{1}{5}\end{cases}}< =>\hept{\begin{cases}y=\frac{9}{40}\\x=\frac{1}{40}\end{cases}}\)
Bài 1:
a) (2x-3). (x+1) < 0
=>2x-3 và x+1 ngược dấu
Mà 2x-3<x+1 với mọi x
\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)
\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)
b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)
\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu
Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)
Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)
=>....
Bài 2:
\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)
\(=\frac{1}{2}\cdot\frac{998}{3003}\)
\(=\frac{499}{3003}\)
a) (x - 3)x - (x - 3)x + 2 = 0
(x - 3)x - (x - 3)x . (x - 3)2 = 0
(x - 3)x.(1 - (x - 3)2) = 0
=> (x - 3)x = 0 hoặc 1 - (x - 3)x = 0
=> x - 3 = 0 hoặc (x - 3)x = 1
=> x = 3
Thay x = 3 ở trường hợp 1 vào trường hợp 2
=. x - 3 = 1
=> x = 4
\(a,\left(\frac{1}{7}x-\frac{2}{7}\right)\left(-\frac{1}{5}x+\frac{3}{5}\right)\left(\frac{1}{3}x+\frac{4}{3}\right)=0\)
TH1 : \(\frac{1}{7}x-\frac{2}{7}=0\Rightarrow\frac{x-2}{7}=0\Rightarrow x-2=0\Leftrightarrow x=2\)
TH2 : \(-\frac{1}{5}x+\frac{3}{5}=0\Rightarrow\frac{-x+3}{5}=0\Rightarrow-x+3=0\Leftrightarrow x=3\)
TH3 : \(\frac{1}{3}x+\frac{4}{3}=0\Rightarrow\frac{x+4}{3}=0\Rightarrow x+4=0\Leftrightarrow x=-4\)
\(\Rightarrow x\in\left\{2;3;-4\right\}\)
\(b,\frac{1}{6}x+\frac{1}{10}x-\frac{4}{15}x+1=0\)
\(\Rightarrow\frac{5}{30}x+\frac{3}{30}x-\frac{8}{30}x+1=0\)
\(\Rightarrow\frac{5x+3x-8x}{30}+1=0\)
\(\Rightarrow1=0\)( vô lý )\(\Rightarrow x\in\varnothing\)
Vì x^2>=0; (2y-3/5)^10>=0 nên dấu bằng xảy ra khi và chỉ khi x=0; 2y-3/5=0
=> x=0; y=3/10
\(x^2+\left(2y-\frac{3}{5}\right)^{10}=0\)
\(\text{Vì }\hept{\begin{cases}x^2\ge0∀x\\\left(2y-\frac{3}{5}\right)^{10}\ge0∀y\end{cases}}\Rightarrow x^2+\left(2y-\frac{3}{5}\right)^{10}≥0\)
\(\text{Mà }x^2+\left(2y-\frac{3}{5}\right)^{10}=0\)
\(\Rightarrow\hept{\begin{cases}x^2=0\\\left(2y-\frac{3}{5}\right)^{10}=0\end{cases}}\Rightarrow\hept{\begin{cases}x = 0\\2y-\frac{3}{5}=0\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\2y=\frac{3}{5}\end{cases}\Rightarrow\hept{\begin{cases}x = 0\\y=\frac{3}{10}\end{cases}}}\)