\(\sqrt{x+1}+\sqrt{x+6}\)=5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2022

\(\sqrt{x+1}\) + \(\sqrt{x+6}\) = 5

\(\sqrt{\left(x+1\right)\left(x-1\right)}\) + \(\sqrt{\left(x+6\right)\left(x-6\right)}\) = 5

x - 1 + x - 6 = 5

2x - 7 = 5

x = 6

7 tháng 8 2022

\(ĐKXĐ:\left\{{}\begin{matrix}x+1\ge0\\x+6\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge-6\end{matrix}\right.\Leftrightarrow x\ge-1\)

- Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x+6}=b\end{matrix}\right.\left(a\ge0,b\ge\sqrt{5}\right)\)

\(\Rightarrow b^2-a^2=\left(\sqrt{x+6}\right)^2-\left(\sqrt{x+1}\right)=x+6-\left(x+1\right)=5\)

- Ta có hệ phương trình:

\(\left\{{}\begin{matrix}b+a=5\\b^2-a^2=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\\left(b+a\right)\left(b-a\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\5\left(b-a\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\b-a=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b+a=5\\2b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3+a=5\\b=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x+1}=2\\\sqrt{x+6}=3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+1=4\\x+6=9\end{matrix}\right.\)

\(\Leftrightarrow x=3\left(nhận\right)\)

- Vậy tập nghiệm của pt trên là \(S=\left\{3\right\}\)

12 tháng 9 2020

a) Ta có: \(\sqrt{4x-8}+5\sqrt{x-2}-\sqrt{9x-18}=20\)       \(\left(ĐK:x\ge2\right)\)

        \(\Leftrightarrow\sqrt{4}.\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9}.\sqrt{x-2}=20\)

        \(\Leftrightarrow2.\sqrt{x-2}+5\sqrt{x-2}-3.\sqrt{x-2}=20\)

        \(\Leftrightarrow4.\sqrt{x-2}=20\)

        \(\Leftrightarrow\sqrt{x-2}=5\)

        \(\Leftrightarrow x-2=25\)

        \(\Leftrightarrow x=27\left(TM\right)\)

Vậy \(S=\left\{27\right\}\)

12 tháng 9 2020

a, PT <=> \(2\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9\left(x-2\right)}=20\)

\(2\sqrt{x-2}+5\sqrt{x-2}-\sqrt{9}\sqrt{x-2}=20\)

\(\left(2+5-3\right)\sqrt{x-2}=20\)

\(4\sqrt{x-2}=20\Leftrightarrow\sqrt{x-2}=5\Leftrightarrow x-2=25\Leftrightarrow x=27\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

25 tháng 7 2020

\(\sqrt{4\left(1-x\right)^2}-6=0\) 

<=> \(\left|2\left(1-x\right)\right|=6\)

TH1: x \(\ge\)1 Khi đó pt trở thành:

\(2\left(x-1\right)=6\)

<=> x - 1 = 3

<=> x = 4 (tm)

TH2: x < 1, khi đó pt trở thành:

2(1 - x) = 6

<=> 1 - x = 3

<=> x = -2(tm)

vậy S= {4; -2}

25 tháng 7 2020

Trả lời:

\(\sqrt{4\left(1-x\right)^2}-6=0\)

\(\Leftrightarrow2.\left|1-x\right|=6\)

\(\Leftrightarrow\left|1-x\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}1-x=3\\1-x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)

Vậy \(x=\left\{-2,4\right\}\)

\(\sqrt{4x^2+4x+1}=x+2\)\(\left(x\ge-2\right)\)

\(\Leftrightarrow4x^2+4x+1=\left(x+2\right)^2\)

\(\Leftrightarrow4x^2+4x+1=x^2+4x+4\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=-1\left(TM\right)\end{cases}}\)

Vậy \(x=\left\{1,-1\right\}\)

\(\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{20-12\sqrt{5}+9}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-2\sqrt{5}+3}}\)

2 tháng 10 2019

mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)

1.

\(DK:x\in\left[-4;5\right]\)

\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)

\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)

\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)

Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)

\(\Rightarrow\sqrt{x-5}=0\)

\(x=5\left(n\right)\)

Vay nghiem cua PT la \(x=5\)

2 tháng 10 2019

2.

\(DK:x\ge0\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)

\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)

Ta co:

\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)

Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)

TH1:

\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)

TH2:(loai)

Vay nghiem cua PT la \(x\in\left[4;9\right]\)

2 tháng 8 2017

+)\(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)= 2

\(\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\sqrt{\left(x-1+1\right)^2}+\sqrt{\left(x-1-1\right)^2}=2\)

\(\sqrt{x^2}+\sqrt{\left(x-2\right)^2}=2\)

\(x+x-2=2\)

\(2x=4\)

\(x=2\)

+) Hình như sai đâu bài chỗ \(\sqrt{x+3+4\sqrt{x+1}}\)

\(\)

14 tháng 10 2020

998 vì (căn x)^2 = x mà bình phương của 1 số là số đó nhân với chính nó mà nhân chính là : x.y=z <=> z=(x+x)y lần

nên căn của căn và lặp lại sẽ có tổng bằng số đầu(?) kém giải thích :v

8 tháng 10 2018

ĐKXĐ : \(x\ge1\)

\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)

\(\Leftrightarrow\)\(\sqrt{x-1+4\sqrt{x-1}+4}+\sqrt{x-1-6\sqrt{x-1}+9}=5\)

\(\Leftrightarrow\)\(\sqrt{\left(\sqrt{x-1}+2\right)^2}+\sqrt{\left(\sqrt{x-1}-3\right)^2}=5\)

\(\Leftrightarrow\)\(\left|\sqrt{x-1}+2\right|+\left|\sqrt{x-1}-3\right|=5\)

\(\Leftrightarrow\)\(\sqrt{x-1}+\left|\sqrt{x-1}-3\right|=3\)

+) Với \(\sqrt{x-1}-3\ge0\)\(\Leftrightarrow\)\(x\ge10\) ta có : 

\(\sqrt{x-1}+\sqrt{x-1}-3=3\)

\(\Leftrightarrow\)\(2\sqrt{x-1}=6\)

\(\Leftrightarrow\)\(\sqrt{x-1}=3\)

\(\Leftrightarrow\)\(x-1=9\)

\(\Leftrightarrow\)\(x=10\) ( thỏa mãn ) 

+) Với \(\sqrt{x-1}-3< 0\)\(\Leftrightarrow\)\(x< 10\) ta có : 

\(\sqrt{x-1}-\sqrt{x-1}+3=3\)

\(\Leftrightarrow\)\(3=3\) ( thõa mãn với mọi \(x< 10\) ) 

Vậy \(x\le10\)

Chúc bạn học tốt ~ 

PS : mới lớp 8, sai thì thôi nhé :v