\(\sqrt{4x^2-4x+1}\) <5-x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

nguyên tín??

31 tháng 8 2018

\(\sqrt{4x^2-4x+1}< 5-x\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}< 5-x\)

\(\Leftrightarrow\left|2x-1\right|< 5-x\)(1)

Đk : \(5-x\ge0\Leftrightarrow x\le5\)

(1)\(\Rightarrow\orbr{\begin{cases}2x-1=5-x\\2x-1=x-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\left(n\right)\\x=-4\left(n\right)\end{cases}}}\)

Vậy \(x\in\left\{-4;2\right\}\)

17 tháng 10 2018
mấy bài này bn đặt ẩn phụ là ra
17 tháng 10 2018

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~

27 tháng 6 2017

đúng rồi bạn nhé

27 tháng 6 2017

Tacó \(\Delta\)=(-7)2-4x1x2=41>0 =>\(\sqrt{_{ }x1}\)=\(\dfrac{7+\sqrt{41}}{2}\)=>\(_{x1}\)=\(\dfrac{\left(7+\sqrt{41}\right)^2}{4}\)=\(\dfrac{45+7\sqrt{41}}{2}\) =>\(\sqrt{_{ }x2}\)=\(\dfrac{7-\sqrt{41}}{2}\)=>\(_{x_2}\)=\(\dfrac{\left(7-\sqrt{41^{ }}\right)^2}{4}\)=\(\dfrac{45-7\sqrt{41}}{2}\) so sánh với điều kiện X>_0

23 tháng 6 2018

\(1a.\) Để : \(\sqrt{x+\dfrac{3}{x}}+\sqrt{-3x}\) xác định thì :

\(x+\dfrac{3}{x}\) ≥ 0 và \(-3x\) ≥ 0

\(\dfrac{x^2+3}{x}\) ≥ 0 và : x ≤ 0 ⇔ x > 0 và : x ≤ 0 ( Vô lý )

⇔ x ∈ ∅

b. Để : \(\sqrt{x^2+4x+5}\) xác định thì :

\(x^2+4x+5\) ≥ 0

Mà : \(x^2+4x+5=\left(x+2\right)^2+1>0\)

Vậy , ........

c. Để : \(\sqrt{2x^2+4x+5}\) xác định thì :

\(2x^2+4x+5\) ≥ 0

Mà : \(2\left(x^2+2x+1\right)+3=2\left(x+1\right)^2+3>0\)

Vậy ,.........

Bài 2. \(a.x+5\sqrt{x}+6=x+2.\dfrac{5}{2}\sqrt{x}+\dfrac{25}{4}+6-\dfrac{25}{4}=\left(\sqrt{x}+\dfrac{5}{2}\right)^2-\dfrac{1}{4}=\left(\sqrt{x}+\dfrac{5}{2}-\dfrac{1}{2}\right)\left(\sqrt{x}+\dfrac{5}{2}+\dfrac{1}{2}\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\)

\(b.x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)

22 tháng 9 2019

1.Ta co:

\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)

\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)

\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)

Dau '=' xay ra khi \(x=-1\)

Vay \(A_{min}=3\)khi \(x=-1\)

22 tháng 9 2019

2c.

\(DK:x\ge\frac{1}{2}\)

\(\Leftrightarrow\text{ }2x+1+\sqrt{2x-1}=0\)

\(\Leftrightarrow2x-1+\sqrt{2x-1}+2=0\)

\(\Leftrightarrow\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}=0\)

Ma \(\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}>0\)

Vay PT vo nghiem

7 tháng 5 2018

a)\(\sqrt{4x}< =10\)

<=> 4x       <= 100                   

<=>  x     <= 25

b) \(\sqrt{9x}>=3\)

<=> 9x   >= 9

<=> x  >= 1

c) \(\sqrt{4x^2+4x+1}=6\)

<=>\(\sqrt{\left(2x\right)^2+2\left(2x\right).1+1^2}=6\)

<=>\(\sqrt{\left(2x+1\right)^2}=6\)

<=>\(|2x+1|=6\)

<=>\(\orbr{\begin{cases}2x+1=6\\2x+1=-6\end{cases}}\)

<=>\(\orbr{\begin{cases}2x=5\\2x=-7\end{cases}}\)

<=>\(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{-7}{2}\end{cases}}\)

d)\(\sqrt{9x-9}-2\sqrt{x-1}=6\)

<=>\(\sqrt{9\left(x-1\right)}-2\sqrt{x-1}=6\)

<=>\(3\sqrt{x-1}-2\sqrt{x-1}=6\)

<=>\(\sqrt{x-1}=6\)

<=> x - 1       =     36

<=> x           =    37

f) \(\sqrt{2x+1}=\sqrt{x-1}\)

<=> 2x + 1         =   x -1

<=> 2x - x            = -1 -1

<=>  x                 = -2

g)\(\sqrt{x^2-x-1}=\sqrt{x-1}\)

<=>x2 -x  -1               = x -1

<=> x2 -x-x-1+1           = 0

<=> x2  - 2x  + 0           = 0

<=> x(x-2)                 = 0

<=>\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

8 tháng 5 2018

thanks bạn đã giúp mình 

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

15 tháng 8 2018

a/\(x+3+\sqrt{x^2-6x+9}=x+3+\sqrt{\left(x-3\right)^2}=x+3+\left|x-3\right|=x+3+3-x=6\)

b/ \(\sqrt{x^2+4x+4}-\sqrt{x^2}=\sqrt{\left(x+2\right)^2}-\left|x\right|=\left|x+2\right|-\left|x\right|=-x-2-\left(-x\right)=-x-2+x=-2\)

c/ \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\cdot\left(x-1\right)=\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=\left|x-1\right|\)

d/ \(\left|x-2\right|+\dfrac{\sqrt{x^2-4x+4}}{x-2}=2-x+\dfrac{\sqrt{\left(x-2\right)^2}}{x-2}=2-x+\dfrac{\left|x-2\right|}{x-2}=2-x+\dfrac{-\left(x-2\right)}{x-2}=2-x-1=1-x\)

10 tháng 5 2018

1000 bang 2