Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mik xin loi, de dung la
\(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{y}=\dfrac{z}{8}\)va \(3x-2y-z=13\)
ta có : x:\(\dfrac{x}{y}\)=\(\dfrac{1}{3}\)
->x.\(\dfrac{y}{x}\)=\(\dfrac{1}{3}\)
->y=\(\dfrac{1}{3}\)
->x-\(\dfrac{3}{\dfrac{1}{3}}\)=\(\dfrac{1}{2}\)
->x = \(\dfrac{19}{2}\)
Vậy......
a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)
=>x+1=0
hay x=-1
b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>x-2010=0
hay x=2010
c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)
=>x=15
a,-12(x-5)+7(3-x)=20
-12x+60+21-7x=20
-19x=-61
x=\(\frac{61}{19}\)
b,30(x+1)-3(x-5)-15x=25
30x+30+15-3x-15x=25
12x=-20
x=\(-\frac{20}{12}\)
P = x3 - 6x2 + 12x -8 + 6(x2 - 2x + 1 ) - (x3 + 1 )
= x3 - 6x2 + 12x -8 + 6x2 - 12x + 6 - x3 - 1
= -3
\(\Rightarrow\)P ko phụ thuộc vào giá trị của x
#mã mã#
1.a)\(2.x-\dfrac{5}{4}=\dfrac{20}{15}\)
\(\Leftrightarrow2.x=\dfrac{20}{15}+\dfrac{5}{4}=\dfrac{4}{3}+\dfrac{5}{4}=\dfrac{16+15}{12}=\dfrac{31}{12}\)
\(\Leftrightarrow x=\dfrac{31}{12}:2=\dfrac{31}{12}.\dfrac{1}{2}=\dfrac{31}{24}\)
b)\(\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{8}\right)\)
\(\Leftrightarrow\left(x+\dfrac{1}{3}\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{3}=-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{2}-\dfrac{1}{3}=-\dfrac{5}{6}\)
2.Theo đề bài, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}\) và \(a+b=-15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{a+b}{2+3}=\dfrac{-15}{5}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=-3\Rightarrow a=-6\\\dfrac{b}{3}=-3\Rightarrow b=-9\end{matrix}\right.\)
3.Ta xét từng trường hợp:
-TH1:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow x\in\left\{0;1\right\}\)
-TH2:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\)\(\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{0;1\right\}\)
4.\(B=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{9}{49}\right)^9=\left(\dfrac{3}{7}\right)^{21}:\left[\left(\dfrac{3}{7}\right)^2\right]^9=\left(\dfrac{3}{7}\right)^{21}:\left(\dfrac{3}{7}\right)^{18}=\left(\dfrac{3}{7}\right)^3=\dfrac{27}{343}\)
\(\Rightarrow\int^{\frac{1}{2}x-3=0}_{y^2-\frac{1}{4}=0}\Leftrightarrow\int^{x=6}_{\left(y-\frac{1}{2}\right)\left(y+\frac{1}{2}\right)=0}\Rightarrow\int^{x=6}_{\int^{y=\frac{1}{2}}_{y=-\frac{1}{2}}}\)
a) \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\) vậy \(x=1\)
b) \(\left(x-2\right)^2-1=0\Leftrightarrow\left(x-2\right)^2=1\) \(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\) vậy \(x=3;x=1\)
c) \(\left(2x-1\right)^3=-8\Leftrightarrow2x-1=\sqrt[3]{-8}\Leftrightarrow2x-1=-2\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=\dfrac{-1}{2}\) vậy \(x=\dfrac{-1}{2}\)
d) \(\left(x+2\right)^2+1=0\Leftrightarrow\left(x+2\right)^2=-1\) (vô lí)
vậy phương trình vô nghiệm
a) (x-1)2 = 0
<=> x-1 = 0
<=> x = 1
b) (x-2)2 - 1 = 0
<=> (x-2)2 = 1
<=> \(\left\{{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
c) (2x-1)3 = -8
<=> (2x-1)3 = -23
<=> 2x - 1 = -2
<=> 2x = -1
<=> x = \(-\dfrac{1}{2}\)
d) (x+2)2 + 1 = 0
<=> (x+2)2 = -1
<=> x+2 = -1
<=> x = -3
\(\left|x+1\right|+x=2\)
\(\Rightarrow\left|x+1\right|=2-x\)
\(\Rightarrow\left[{}\begin{matrix}x+1=2-x\left(ĐK:x\ge-1\right)\\-x-1=2-x\left(ĐK:x< 1\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2-x-1\Rightarrow x=1-x\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\left(TM\right)\\-x=3-x\Rightarrow0=3\left(KTM\right)\end{matrix}\right.\)
| x + 1 | + x = 2
\(\Leftrightarrow\)x+1+x=2
\(\Leftrightarrow\)x+x+1=2
\(\Leftrightarrow\)2x+1=2
\(\Rightarrow2x=2-1\)
\(\Rightarrow2x=1\)
\(\Rightarrow x=1:2\)
\(\Rightarrow x=\dfrac{1}{2}\)
Vậy x=\(\dfrac{1}{2}\)