Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\frac{-16}{5}+\frac{2}{5}\right|\)
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\frac{-14}{5}\right|\)
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\)
\(\left|x-\frac{1}{3}\right|=\frac{14}{5}-\frac{4}{5}\)
\(\left|x-\frac{1}{3}\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=2\\x-\frac{1}{3}=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=\frac{-5}{3}\end{cases}}\)
làm tiếp câu a) nhé
b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
\(\left(x-7\right)^{x+1}.\left[1-\left(x-7\right)^{10}\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x-7=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=8\end{cases}}\)
\(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|\left(-3,2\right)+\dfrac{2}{5}\right|\)
\(\Leftrightarrow\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\dfrac{14}{5}\)
\(\Rightarrow\left|x-\dfrac{1}{3}\right|=\dfrac{14}{5}-\dfrac{4}{5}\)
\(\Rightarrow\left|x-\dfrac{1}{3}\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=2\\x-\dfrac{1}{3}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{-5}{3}\end{matrix}\right.\)
Vậy..............
\(\left | x - \frac{1}{3} \right | + \frac{4}{5} = \left | \left ( - 3,2 \right ) + \frac{2}{5}\right |\)
\(\left | x - \frac{1}{3} \right | + \frac{4}{5} = \left | - \frac{14}{5} \right |\)
\(\left | x - \frac{1}{3} \right | + \frac{4}{5} = \frac{14}{5} \)
\(\left | x - \frac{1}{3} \right | = 2\)
* \(x - \frac{1}{3}= 2\)
x = 2 + \( \frac{1}{3}\)
\(x = \frac{7}{3}\)
* \(x - \frac{1}{3}= - 2\)
\(x = - 2 + \frac{1}{3}\)
\(x = - \frac{5}{3}\)
Vậy x = \(x = \frac{7}{3}; x = - \frac{5}{3}\)
Mấy câu này dễ mà,động não lên chứ bạn:v
Link______________Link
h) \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)
\(\ge\left|x-1+3-x\right|=2\)
\(\Rightarrow x+1>2\Leftrightarrow x>1\)
Vậy: \(\left\{{}\begin{matrix}x>1\\x\in R\end{matrix}\right.\)
Câu b xét khoảng tương tự với cái link t đưa thôi
hơi bức xúc rồi đó
tau chỉ muốn kiểm tra lại thôi
a/dễ --> tự lm
b/ \(\left(x-\dfrac{4}{7}\right)\left(1\dfrac{3}{5}+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{5}=0\\1\dfrac{3}{5}+2x=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\2x=\dfrac{8}{5}\Rightarrow x=\dfrac{4}{5}\end{matrix}\right.\)
Vậy...............
c/ \(\left(x-\dfrac{4}{7}\right):\left(x+\dfrac{1}{2}\right)>0\)
TH1: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}>0\\x+\dfrac{1}{2}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{4}{7}\\x>-\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x>\dfrac{4}{7}\)
TH2: \(\left\{{}\begin{matrix}x-\dfrac{4}{7}< 0\\x+\dfrac{1}{2}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< \dfrac{4}{7}\\x< -\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow x< -\dfrac{1}{2}\)
Vậy \(x>\dfrac{4}{7}\) hoặc \(x< -\dfrac{1}{2}\) thì thỏa mãn đề
d/ \(\left(2x-3\right):\left(x+1\dfrac{3}{4}\right)< 0\)
TH1: \(\left\{{}\begin{matrix}2x-3>0\\x+1\dfrac{3}{4}< 0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1,5\\x< -\dfrac{7}{4}\end{matrix}\right.\)(vô lý)
TH2: \(\left\{{}\begin{matrix}2x-3< 0\\x+1\dfrac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x< 1,5\\x>-\dfrac{7}{4}\end{matrix}\right.\)\(\Rightarrow-\dfrac{7}{4}< x< 1,5\)
Vậy...................
|2x-1|=1,5
TH(1)2x-1=1,5
2x =1,5+1
2x =2,5
x =2,5 :2
x =1,25
TH(2) 2x-1=-1,5
2x =-1,5+1
2x =-0,5
x =-0,5:2
x =-0,25
các câu khác cứ tương tự bạn nhé
b) \(7,5-\left|5-2x\right|=-4,5\)
\(\left|5-2x\right|=7,5+4,7\)
\(\left|5-2x\right|=12\)
th1 :\(5-2x=12\)
\(2x=5-12\)
\(2x=-7\)
\(x=-7:2\)
\(x=-3,5\)
th2: \(5-2x=-12\)
\(2x=5+12\)
\(2x=17\)
\(x=17:2\)
\(x=8,5\)
c) \(-3+\left|x\right|=-1\)
\(\left|x\right|=-1+3\)
\(\left|x\right|=2\)
th1: \(x=-2\)
th2 : \(x=2\)
d)\(\left|2\dfrac{1}{3}-x\right|=\dfrac{1}{6}\)
\(\left|\dfrac{7}{3}-x\right|=\dfrac{1}{6}\)
th1 :\(\dfrac{7}{3}-x=\dfrac{1}{6}\)
\(x=\dfrac{7}{3}-\dfrac{1}{2}\)
\(x=\dfrac{11}{6}\)
th2: \(\dfrac{7}{3}-x=\dfrac{-1}{6}\)
\(x=\dfrac{7}{3}+\dfrac{1}{6}\)
\(x=\dfrac{-5}{2}\)
e) \(\dfrac{5}{7}-\left|x+1\right|=\dfrac{1}{14}\)
\(\left|x+1\right|=\dfrac{5}{7}-\dfrac{1}{14}\)
\(\left|x+1\right|=\dfrac{9}{14}\)
th1 :\(x+1=\dfrac{9}{14}\)
\(x=\dfrac{9}{14}-1\)
\(x=\dfrac{-5}{14}\)
th2 : \(x+1=\dfrac{-9}{14}\)
\(x=\dfrac{-9}{14}-1\)
\(x=\dfrac{-5}{14}\)
a) \(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|\left(-3,2\right)+\dfrac{2}{5}\right|\)
\(\Rightarrow\left|x-\dfrac{1}{3}\right|+0,8=\left|-3,2+0,4\right|\)
\(\Rightarrow\left|x-\dfrac{1}{3}\right|+0,8=2,8\)
\(\Rightarrow\left|x-\dfrac{1}{3}\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{3}=2\\x-\dfrac{1}{3}=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=\dfrac{-5}{3}\end{matrix}\right.\)
mình làm lại câu b) nha
b) |x-3|=-4
th1: x-3=-4
x=3+(-4)
x=-1
th2: x-3=4
x=3+4
x=7
b) \(\left|x-3\right|=-4\)
t/h1:\(x-3=-4\)
\(x=3-\left(-4\right)\)
\(x=7\)
t/h2:\(x-3=4\)
\(x=3-4\)
\(x=-1\)
c. \(^{ }\left(2x+3\right)^2=\dfrac{9}{121}\)
=> \(\left(2x+3\right)^2=\left(\dfrac{3}{11}\right)^2\)
=> 2x +3 = \(\dfrac{3}{11}\) hoặc 2x+3 = \(\dfrac{-3}{11}\)
=> x= \(\dfrac{-15}{11}\) hoặc x = \(\dfrac{-18}{11}\)
d. \(\left(2x-1\right)^3=\dfrac{-8}{27}\)
=> \(\left(2x-1\right)^3=\left(\dfrac{-2}{3}\right)^3\)
=> 2x-1 = \(\dfrac{-2}{3}\)
=> x= \(\dfrac{1}{6}\)
Bài này có 2 cách, cách 1 là xét 3 trường hợp, cách 2 là sử dụng phương pháp đánh giá. Trong bài này cách 2 ngắn hơn thì mình sẽ làm.
Điều kiện: x \(\ge\)0
Ta có: VT = |x - 3,2| + |2x - 0,2| = |3,2 - x| + |2x - 0,2| \(\ge\) |3,2 - x + 2x - 0,2| = |x + 3| = VP
Dấu "=" xảy ra <=> (3,2 - x)(2x - 0,2) \(\ge\) 0.
<=> \(\left[{}\begin{matrix}\left\{{}\begin{matrix}3,2-x\ge0\\2x-0,2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le3,2\\x\ge0,1\end{matrix}\right.\Leftrightarrow0,1\le x\le3,2}}\\\left\{{}\begin{matrix}3,2-x\le0\\2x-0,2\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge3,2\\x\le0,1\end{matrix}\right.\Leftrightarrow x}\in\varphi}\end{matrix}\right.\)
Bài này you copy đúng k