Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 1/ 2.5 + 1/ 5.8 + 1/ 8.11 + ... + 1/ (3n-1).(3n+2) .
= 1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/ 3n-1 - 1/ 3n+2 .
= 1/2 - 1/ 3n+2 .
= 3n + 2 - 2 / 2 .( 3n+2 ) .
= 3n / 2.(3n+2) .
\(\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{65.68}\right)x=\frac{19}{68}+\frac{7}{34}\)
\(\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...-\frac{1}{68}\right)x=\frac{33}{68}\)
\(\left(\frac{1}{2}-\frac{1}{68}\right)x=\frac{33}{68}\)
\(\frac{33}{68}x=\frac{33}{68}\)
\(x=\frac{33}{68}:\frac{33}{68}=1\)
<=> \(\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
<=>\(\frac{1}{3}\cdot\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}\cdot3=\frac{303}{1540}\)
<=>\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
<=>\(x+3=308\)
<=>\(x=305\)
đặt \(\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+....+\frac{1}{65.68}\right)\)là A
Ax=\(\frac{19}{68}+\frac{7}{34}=\frac{33}{68}\)
3A=\(3.\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{11}{8.11}+...+\frac{1}{65.68}\right)\)
3A=\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{65.68}\)
3A=\(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{65}-\frac{1}{68}\)
3A=\(\frac{1}{2}-\frac{1}{68}=\frac{33}{68}\)
A=33/68:3=11/68
\(\Rightarrow\)33/68:11/68=3
vậy x= 3
Trả lời giúp mk nha mk cho 3 h lun nói thietj ó