Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2cos^2x-1\right)-4cosx-1=0\\sinx\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4cos^2x-4cosx-3=0\\sinx\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}cosx=\frac{3}{2}\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\\sinx\ge0\end{matrix}\right.\)
\(\Leftrightarrow x=\frac{2\pi}{3}+k2\pi\)
Lời giải:
Để hàm số trên liên tục tại $x_0=0$ thì:
\(\lim\limits_{x\to 0+}f(x)=\lim\limits_{x\to 0-}f(x)=f(0)\)
\(\Leftrightarrow \lim\limits_{x\to 0+}(a+\frac{4-x}{x+2})=\lim\limits_{x\to 0-}(\frac{\sqrt{1-x}+\sqrt{1+x}}{x})=a+2\)
\(\Leftrightarrow a+2=\lim\limits_{x\to 0-}\frac{\sqrt{1-x}+\sqrt{1+x}}{x}\)
Mà \(\lim\limits_{x\to 0-}\frac{\sqrt{1-x}+\sqrt{1+x}}{x}=-\infty \) nên không tồn tại $a$ để hàm số liên tục tại $x_0=0$
\(f\left(0\right)=1\)
\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\left(x^2+x+1\right)=1\)
\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(x+2ax\right)=0\)
Để hàm liên tục tại \(x=0\)
\(\Leftrightarrow f\left(0\right)=\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^-}f\left(x\right)\)
\(\Leftrightarrow1=1=0\) (vô lý)
Vây ko tồn tại giá trị a thỏa mãn yêu cầu
//Bạn coi lại đề chỗ \(x+2ax\) có phải là \(x^2+2a\) hoặc \(x+2a\)?
Khi `x<0` : Hàm số `f(x)` liên tục tại `x=0`.
Khi `x>0`: Hàm số `f(x)` liên tục tại `x=0`.
Có:
`f(0) = 1`
\(\lim_\limits{x\to0^-}f(x)=\lim_\limits{x\to0}(x+2ax)=0\)
\(\lim_\limits{x\to0^+}f(x)(x^2+x+1)=1\)
`=>` \(\lim_\limits{x\to0^-}f(x) \ne \lim_\limits{x\to0^+} f(x)\)
`=>` Không có giá trị của a thỏa mãn.
2.
\(\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^-}\left(x+2a\right)=2a\)
\(\lim\limits_{x\rightarrow0^+}f\left(x\right)=\lim\limits_{x\rightarrow0^+}\left(x^2+x+1\right)=1\)
Hàm liên tục tại \(x=0\Leftrightarrow\lim\limits_{x\rightarrow0^-}f\left(x\right)=\lim\limits_{x\rightarrow0^+}f\left(x\right)\)
\(\Leftrightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)
3. Đặt \(f\left(x\right)=x^4-x-2\)
Hàm \(f\left(x\right)\) liên tục trên R nên liên tục trên \(\left(1;2\right)\)
\(f\left(1\right)=-2\) ; \(f\left(2\right)=12\Rightarrow f\left(1\right).f\left(2\right)=-24< 0\)
\(\Rightarrow f\left(x\right)\) luôn có ít nhất 1 nghiệm thuộc (1;2)
Hay pt đã cho luôn có nghiệm thuộc (1;2)
a.
\(\left\{{}\begin{matrix}x^4+y^4=34\\y=2-x\end{matrix}\right.\)
\(\Rightarrow x^4+\left(x-2\right)^4=34\)
Đặt \(x-1=t\)
\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=34\)
\(\Leftrightarrow t^4+6t^2-16=0\Rightarrow\left[{}\begin{matrix}t^2=2\\t^2=-8\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}t=\sqrt{2}\Rightarrow x=\sqrt{2}+1\Rightarrow y=1-\sqrt{2}\\t=-\sqrt{2}\Rightarrow x=1-\sqrt{2}\Rightarrow y=1+\sqrt{2}\end{matrix}\right.\)
b.
\(\left\{{}\begin{matrix}xy^2-x^2y+6x-y^2-y-6=0\\x^2y-xy^2+6y-x^2-x-6=0\end{matrix}\right.\) (1)
Lần lượt cộng 2 vế và trừ 2 vế ta được:
\(\left\{{}\begin{matrix}-x^2-y^2+5x+5y-12=0\\2xy\left(y-x\right)+7\left(x-y\right)+\left(x-y\right)\left(x+y\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-5\left(x+y\right)+12=0\\\left(y-x\right)\left(2xy-x-y-7\right)=0\end{matrix}\right.\)
Th1: \(\left\{{}\begin{matrix}x=y\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)
\(\Rightarrow2x^2-10x+12=0\Rightarrow...\)
TH2: \(\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\x^2+y^2-5\left(x+y\right)+12=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2xy-\left(x+y\right)-7=0\\\left(x+y\right)^2-2xy-5\left(x+y\right)+12=0\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2v-u-7=0\\u^2-2v-5u+12=0\end{matrix}\right.\)
\(\Rightarrow u^2-6u+5=0\)
\(\Leftrightarrow...\)
Nhìn cái đề lúc đầu không biết phải xử lý thế nào luôn
\(2\left(2cos^2x-1\right)-4cosx=1\)
\(\Leftrightarrow4cos^2x-4cosx-3=0\)
\(\Rightarrow\left[{}\begin{matrix}cosx=\frac{3}{2}>1\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow cosx=cos\left(\frac{2\pi}{3}\right)\)
\(\Rightarrow x=\frac{2\pi}{3}+k2\pi\) (do \(sinx\ge0\) nên ko nhận nghiệm \(-\frac{2\pi}{3}+k2\pi\))
sin2x thành cos2x nha