\(\left(3x-1\right)^{2013}=\left(3x-1\right)^{2015}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

x=1/3 hoặc x=2/3 bạn nhé.

21 tháng 2 2017

pt <=> \(\left(3x-1\right)^{2013}-\left(3x-1\right)^{2015}=0\)

\(\Leftrightarrow\left(3x-1\right)^{2013}\left(\left(3x-1\right)^2-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)^{2013}\left(3x-2\right)3x=0\)

\(\orbr{\begin{cases}x=0\\3x-1=0,3x-2=0\end{cases}}\)

Vậy x=0, x=1/3,hoặc x=2/3

4 tháng 12 2017

a)\(\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow6x=36\Leftrightarrow x=6\)

10 tháng 10 2019

a, (3x - 5)(2x - 1) - (x + 2)(6x - 1) = 0

=> 6x^2 - 3x - 10x + 5 - (6x^2 - x + 12x - 2) = 0

=> 6x^2 - 13x + 5 - 6x^2 - 11x + 2 = 0

=> -24x + 7 = 0 

=> - 24x = -7

=> x = 7/24

b, (3x - 2)(3x + 2) - (3x - 1)^2 = -5

=> 9x^2 - 4 - 9x^2 + 6x - 1 = -5

=> 6x - 5 = -5

=> 6x = 0

=> x = 0

c, x^2 = -6x - 8

=> x^2 + 6x + 8 = 0

=> x^2 + 2.x.3 + 9 - 1 = 0

=> (x + 3)^2 = 1

=> x + 3 = 1 hoặc x + 3 = -1

=> x = -2 hoặc x = -4

18 tháng 7 2016

a) \(3x\left(2x+1\right)=5\left(2x+1\right)\)

\(3x=5\)

\(x=\frac{5}{3}\)

b) \(\left(3x-8\right)^2=\left(2x-7\right)^2\)

\(3x-8=2x-7\)

\(x=1\)

c) \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2=0\)

\(\left(4x^2-3x-18\right)^2=\left(4x^2+3x\right)^2\)

\(4x^2-3x-18=4x^2+3x\)

\(6x=-18\)

\(x=-3\)

d) Sai đề

e) ko bt

31 tháng 8 2017

\(f\left(x\right)=x^3-3x^2+3x+3=\left(x-1\right)^3+2\)

Thay vào là OK!!

21 tháng 12 2017

1, \(5x\left(x-1\right)=x-1\Rightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\Rightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}}\)

2, \(2x\left(12x-5\right)-8x\left(3x-1\right)=30\)

\(\Rightarrow24x^2-10x-24x^2+8x=30\) \(\Rightarrow-2x=30\Rightarrow x=-15\)

3, \(3x\left(3-2x\right)+6x\left(x-1\right)=15\) \(\Rightarrow9x-6x^2+6x^2-6x=15\Rightarrow3x=15\Rightarrow x=5\)

4, \(x\left(x-3\right)+x-3=0\Rightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\) 

23 tháng 6 2017

a) \(2\left|x\right|-\left|x+1\right|=2\) (1)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\left(x+1\right)=2\left(đk:x\ge0;x+1\ge0\right)\\2\cdot\left(-x\right)-\left(x+1\right)=2\left(đk:x< 0;x+1\ge0\right)\\2x-\left(-\left(x+1\right)\right)=2\left(đk:x\ge0;x+1< 0\right)\\2\cdot\left(-x\right)-\left(-\left(x+1\right)\right)=2\left(đk:x< 0:x+1< 0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(đk:x\ge0;x\ge-1\right)\\x=-1\left(đk:x< 0;x\ge-1\right)\\x=\dfrac{1}{3}\left(đk:x\ge0;đk:x< -1\right)\\x=-1\left(đk:x< 0;x< -1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\\x\in\varnothing\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{-1;3\right\}\)

- làm tương tự

25 tháng 11 2019

b. (x2-0,5):2x-(3x-1)2:(3x-1)=0

<=> \(\frac{1}{2}\)x-0,25-3x+1=0

<=>\(-\frac{5}{2}\)x+0,75=0

<=> \(-\frac{5}{2}\)x=-0,75

<=> x=0,3

chúc bạn học tốt

25 tháng 11 2019

\(a.\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=4\)

\(\Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]=4\)

\(\Leftrightarrow\left(x^2+x+5x+5\right)\left(x^2+4x+2x+8\right)=4\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=4\)

\(\text{Đặt a = }x^2+6x+5\text{ }\Rightarrow\text{ }a+3=x^2+6x+8\)

\(\Leftrightarrow a\left(a+3\right)=4\)

\(\Leftrightarrow a^2+3a-4=0\)

\(\Leftrightarrow a^2+4a-a-4=0\)

\(\Leftrightarrow a\left(a+4\right)-\left(a+4\right)=0\)

\(\Leftrightarrow\left(a+4\right)\left(a-1\right)=0\)

\(\Leftrightarrow\left(x^2+6x+9\right)\left(x^2+6x+4\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2\left[\left(x^2+6x+9\right)-5\right]=0\)

\(\Leftrightarrow\left(x+3\right)^2\left[\left(x+3\right)^2-5\right]=0\)

\(\text{Hoặc }\left(x+3\right)^2=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)

\(\text{Hoặc }\left(x+3\right)^2-5=0\Leftrightarrow\left(x+3\right)^2=5\Leftrightarrow\hept{\begin{cases}x+3=\sqrt{5}\\x+3=-\sqrt{5}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{5}-3\\x=-\sqrt{5}-3\end{cases}}}\)

\(\text{Vậy }x\in\left\{-3;\sqrt{5}-3;-\sqrt{5}-3\right\}\)