K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

Từ |12x-3| - |12x+3| = 0

Suy ra ta có 2 trường hợp:

(+) 12x - 3 = 0

\(\Rightarrow\) x = 1/4

(+) 12x + 3 = 0

\(\Rightarrow\) x = -1/4

30 tháng 9 2017

a) \(\left|2+3x\right|=\left|4x-3\right|\)

\(\Rightarrow2+3x=4x-3\)

\(\Rightarrow2+3=4x-3x\)

\(\Rightarrow5=x\)

Vậy x=5

b) \(\left|x-y-2\right|+\left|y+3\right|=0\)

\(\Leftrightarrow\left|x-y-2\right|=0\) và  \(\left|y+3\right|=0\)

\(\Leftrightarrow x-y-2=0\) và   \(y+3=0\)

\(\Leftrightarrow x-y=0+2\) và  \(y=0+3\)

\(\Leftrightarrow x-y=2\) và    \(y=3\)

Vì y=3 nên ta có:

\(x-3=2\)

\(x=2+3\)

\(x=5\)

Vậy \(x=5;y=3\)

30 tháng 9 2017

b) |x-y-2| + |y+3| = 0

Vì |x-y-2| \(\ge0\)với mọi x;y

|y+3| \(\ge0\)với mọi x;y

\(\Rightarrow\)|x-y-2| + |y+3| = 0 \(\Leftrightarrow\)x - y - 2 = 0 và y + 3 =0

\(\Leftrightarrow\)y = 3 và x = 5

Vậy x = 5; y= 3

Phần a rất đơn giản nên mình sẽ không trình bày. Mình chỉ hướng dẫn thôi: Bạn hãy đi xét hai trường hợp 2 + 3x dương và 2 +3x âm.

4x - 3 dương và 4x - 3 âm. Lần lượt thay kết quả vào biểu thức là bạn  sẽ tìm ra được giá trị của x và y.

10 tháng 7 2018

           lal+a

TH1 : = a + a = 2a

TH2 : = ( - a)  + a  = 0

             lal/a

TH1 : = a/a  =1

TH2 : = -a/a  = ( -1)

            lal-a

TH1 : = a - a = 0

TH2 : = (-a) - a 

           lal*a

TH1 : = a * a = a2

TH2 : = (-a) * a 

Ko chắc hok tốt

3 tháng 5 2016

a) 2|2x-3| = 1/2

=>  |2x-3| = 1/4

=>  2x-3 = 1/4 hoặc 2x-3 = -1/4

=>  x = 13/8 hoặc x = 11/8

b) 7,5 - 3|5-2x| = -4,5

=>  3|5-2x| = 12

=>  |5-2x| = 4

=>  5-2x = 4 hoặc 5-2x = -4

=>  x = 1/2   hoặc x = 4,5

c) |3x-4| + |5y+5| = 0

=>  3x-4 = 0 hoặc 5y+5 = 0

=>  x = 4/3 hoặc y = -1

d) |x+3| + |x+1| = 3x

=>  x+3+ x+1 = 3x

=>  2x + 4 = 3x

=>  x = 4

28 tháng 5 2018

Vì GTTĐ luôn lớn hơn hoặc bằng 0

=> x - 1 + x - 3 + x - 5 + x - 7 = 8

    4x - 16 = 8

     4x       = 8 + 16 

     4x       = 24

=> x = 6

Vậy.........

28 tháng 5 2018

Sai rồi nhé , Bonking . 

\(\left|x-1\right|=\orbr{\begin{cases}x-1\left(x>0\right)\\-x+1\left(x< 0\right)\end{cases}}\)