\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}+\frac{4x}{a+b+c}=1\)

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2016

\(\Rightarrow\)\(\frac{a+b-x}{c}+\frac{b+c-x}{a}+\frac{c+a-x}{b}=1-\frac{4x}{a+b+c}\)

\(\Leftrightarrow\)\(\frac{a+b+c-x}{c}+\frac{b+c+a-x}{a}+\frac{c+a+b-x}{b}=4-\frac{4x}{a+b+c}\)(Vế trái cộng mỗi phân số với 1 thì vế phải +3)

\(\Leftrightarrow\)\(\left(a+b+c-x\right)\left(\frac{1}{c}+\frac{1}{b}+\frac{1}{a}\right)=4\left(a+b+c-x\right).\frac{1}{a+b+c}\)

+ Xét \(a+b+c-x=0\Rightarrow x=a+b+c\)

+ Xét \(a+b+c-x\)khác 0 \(\Rightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\left(\frac{1}{a+b+c}\right)\)

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}>4\left(\frac{1}{a+b+c}\right)\)(bất đẳng thức COSY đó bạn)

như vậy là phương trình vô nghiệm

1 tháng 1 2017

Sai rồi nha bạn Nguyễn Thuỳ Trang.

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{a+b+c}\) vẫn được mà.

Đề có cho \(a,b,c\) dương đầu mà dùng Cauchy như đúng rồi vậy! Cẩn thận một chút.

7 tháng 6 2020

C1: điều kiện xác định của phương trình 5x+14x2+x31+x=05x+14x−2+x−31+x=0 là:

A. x 1212

B. x -1 và x 1212

C. x -1 và x12≠−12

D. x -1

C2: bất phương trình nào sau đây là bất phương trình bậc nhất một ẩn?

A. 2x2 +1<0

B. 0.x +4>0

C. x+33x+2016>0x+33x+2016>0

D. 11x1<011x1<0

C3: với x < y ta có:

A. x-5 >y -5

B. 5-2x <5-2y

C. 5-x<5-y

D. 2x-5<2y -5

C4: khi x<0 kết quả rút gọn của biểu thức |2x|x+5|−2x|−x+5 là:

A. -3x+5

B. x+5

C. -x+5

D. 3x+5

17 tháng 5 2020

Điều kiện xác định của phương trình: \(\frac{5x-1}{4x+2}-\frac{x+3}{x-2}=0\) là:

B: \(x\ne-\frac{1}{2};x\ne2\)

20 tháng 6 2017

\(P=\frac{ab+c}{\left(a+b\right)^2}.\frac{bc+a}{\left(b+c\right)^2}.\frac{ca+b}{\left(c+a\right)^2}\)

\(=\frac{ab+c\left(a+b+c\right)}{\left(a+b\right)^2}.\frac{bc+a\left(a+b+c\right)}{\left(b+c\right)^2}.\frac{ca+b\left(a+b+c\right)}{\left(c+a\right)^2}\)

\(=\frac{\left(c+a\right)\left(c+b\right)}{\left(a+b\right)^2}.\frac{\left(a+b\right)\left(a+c\right)}{\left(b+c\right)^2}.\frac{\left(b+a\right)\left(b+c\right)}{\left(c+a\right)^2}=1\)

26 tháng 4 2017

bình phương gt1 và gt2 và thay vào là ra bạn à