Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có :x2+2x+2=(x+1)2+1>0,với mọi x
x2+2x+3=(x+1)2+2>0,với mọi x
ĐKXĐ:x\(\in\)R.Đặt x2+2x+2=a (a>0),ta có:\(\dfrac{a-1}{a}+\dfrac{a}{a+1}=\dfrac{7}{6}\)
<=>\(\dfrac{6\left(a-1\right)\left(a+1\right)}{6a\left(a+1\right)}+\dfrac{6a^2}{6a\left(a+1\right)}=\dfrac{7a\left(a+1\right)}{6a\left(a+1\right)}\)
=>6(a2-1)+6a2=7a2+7a<=>6a2-6+6a2=7a2+7a<=>12a2-7a2-7a-6=0
<=>5a2-7a-6=0<=>(a-2)(5a+3)=0<=>a-2=0(vì a>0,nên 5a+3>0)
<=>a=2=>x2+2x+2=2<=>x(x+2)=0<=>\(|^{x=0}_{x+2=0< =>x=-2}\)
Vậy tặp nghiệm của PT là S\(=\left\{0;-2\right\}\)
\(\dfrac{x^2-1}{x}+\dfrac{x}{x^2-x-1}=-1\)
\(\Leftrightarrow\dfrac{\left(x^2-1\right)\left(x^2-x-1\right)}{x\left(x^2-x-1\right)}+\dfrac{x^2}{x\left(x^2-x-1\right)}=-\dfrac{x\left(x^2-x-1\right)}{x\left(x^2-x-1\right)}\)
\(\Rightarrow x^4-x^3-2x^2+x+1+x^2=-x^3+x^2+x\)
\(\Leftrightarrow x^4-x^3-2x^2+x+x^2+x^3-x^2-x=-1\)
\(\Leftrightarrow x^4-2x^2=-1\)
\(\Leftrightarrow\left(x^2-1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2=1\\x^2=1\end{matrix}\right.\Leftrightarrow x=1;x=-1\)
Vậy tập nghiệm của phương trình là S={1;-1}