\(\frac{18}{x}=\frac{x}{\frac{2}{46}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2015

18 / X = X/ 2/46 áp dụng tính chất ta có 

18 . 2/ 46 = X.X

18/23 = X^ 2

=> X = CĂN bậc của 18 / 23

10 tháng 8 2020

a, \(\left|x+\frac{1}{3}\right|=0\Leftrightarrow x=-\frac{1}{3}\)

b, \(\left|\frac{5}{18}-x\right|-\frac{7}{24}=0\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{18}-x=\frac{7}{24}\\\frac{5}{18}-x=-\frac{7}{24}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{72}\\x=\frac{41}{72}\end{cases}}\)

c, \(\frac{2}{5}-\left|\frac{1}{2}-x\right|=6\Leftrightarrow\left|\frac{1}{2}-x\right|=-\frac{28}{5}\)vô lí 

Vì \(\left|\frac{1}{2}-x\right|\ge0\forall x\)*luôn dương* Mà \(-\frac{28}{5}< 0\)

=> Ko có x thỏa mãn 

10 tháng 8 2020

\(|x+\frac{1}{3}|=0\)

\(< =>x+\frac{1}{3}=0< =>x=-\frac{1}{3}\)

\(|x+\frac{3}{4}|=\frac{1}{2}\)

\(< =>\orbr{\begin{cases}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{cases}}\)

\(< =>\orbr{\begin{cases}x=-\frac{1}{4}\\x=-\frac{5}{4}\end{cases}}\)

10 tháng 10 2016

1) Ta có:

\(\frac{1+2y}{18}=\frac{1+4y}{24}\)\(\Rightarrow\left(1+2y\right).24=\left(1+4y\right).18\)

=> 24 + 48y = 18 + 72y

=> 72y - 48y = 24 - 18

=> 24y = 6

\(\Rightarrow y=\frac{6}{24}=\frac{1}{4}\)

Thay \(y=\frac{1}{4}\) vào đề bài ta có:

\(\frac{1+2.\frac{1}{4}}{18}=\frac{1+6.\frac{1}{4}}{6x}\)

\(\Rightarrow\frac{1+\frac{1}{2}}{18}=\frac{1+\frac{3}{2}}{6x}\)

\(\Rightarrow\frac{3}{2}.\frac{1}{18}=\frac{5}{2}:6x\)

\(\Rightarrow\frac{1}{12}=\frac{5}{2}:6x\)

\(\Rightarrow6x=\frac{5}{2}:\frac{1}{12}=\frac{5}{2}.12=30\)

=> x = 30 : 6 = 5

Vậy \(x=5;y=\frac{1}{4}\)

2) Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(x+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2.\left(x+y+z\right)}{x+y+z}=2\)

                                                                                  \(=\frac{1}{x+y+z}\) (theo đề bài)

\(\Rightarrow x+y+z=\frac{1}{2}\)

Ta có: \(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=2\)

\(\Rightarrow\frac{y+z+1}{x}+1=\frac{x+z+2}{y}+1=\frac{x+y-3}{z}+1=2+1\)

\(\Rightarrow\frac{x+y+z+1}{x}=\frac{x+y+z+2}{y}=\frac{x+y+z-3}{z}=3\)

\(\Rightarrow\frac{\frac{1}{2}+1}{x}=\frac{\frac{1}{2}+2}{y}=\frac{\frac{1}{2}-3}{z}=3\)

\(\Rightarrow\frac{3}{2}:x=\frac{5}{2}:y=\frac{-5}{2}:z=3\)

\(\Rightarrow\begin{cases}x=\frac{3}{2}:3=\frac{1}{2}\\y=\frac{5}{2}:3=\frac{5}{6}\\z=\frac{-5}{2}:3=\frac{-5}{6}\end{cases}\)

Vậy \(x=\frac{1}{2};y=\frac{5}{6};z=\frac{-5}{6}\) 

 

 

9 tháng 10 2016

/hoi-dap/question/100672.html

19 tháng 7 2017

Em chỉ giải phần B thôi nhé !

x/4=y/3=x-y/4-3=x2-y2=42-32=28/7=4

Suy ra x/4=4 -> x= 16

            y/3=4-> y =12

 chị thông cảm em mói học lop 6 dung thi dung sai thi sai dung la em nha

19 tháng 7 2017

hk sao đâu e

24 tháng 9 2017

Bài 1 :

a) \(\frac{x}{7}=\frac{18}{14}\)

=> x.14 = 7.18

x.14 = 126

x = 126:14

x = 9

b) \(\frac{6}{x}=\frac{7}{4}\)

=> \(x=\frac{6.4}{7}=\frac{24}{7}\)

c) Theo mình đề thế này mới đúng \(\frac{5,7}{0,35}=\frac{\left(-x\right)}{0,45}\)

=> 5,7.0,45 = 0,35.(-x)

2,565 = 0,35.(-x)

(-x) = 2,565:0,35

(-x) = 513/70

=> -x = -513/70

x = 513/70

Bài 2 : Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{y}{4}=\frac{z}{6}=\frac{x-y+z}{2-4+6}=\frac{8}{4}=2\)

\(\frac{x}{2}=2\) 

x = 2.2

x = 4

\(\frac{y}{4}=2\)

y = 2.4

y = 8

\(\frac{z}{6}\) = 2

z = 2.6

z = 12

Vậy x=4 ; y=8 và z=12

24 tháng 9 2017

\(\frac{x}{7}=\frac{18}{14}\Rightarrow x=18\cdot7:17=9\)

18 tháng 7 2018

\(\frac{x}{y}=\frac{5}{2}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{2}\)

áp dụng t\c của dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{15}{3}=5\)

\(\Rightarrow\hept{\begin{cases}x=5\cdot5=25\\y=5\cdot2=10\end{cases}}\)

18 tháng 7 2018

Ta có: x/y=5/2 và x—y=15

==> x/5=y/2 và x—y=15

Áp Dụng tính chất dãy tỉ số bằng nhau, ta có

x/5=y/2= x—y/5–2=15/3=5

Ta được: x=5.5=25

y=5.2=10

b)Ta có:x/9=y/2 và x—3y=18

Áp Dụng tính chất dãy tỉ số bằng nhau, ta có:

x/9=y/2=x/9=3y/6=x—3y/9–6=18/3=6

Ta được: x= 9.6=54

y=2.6=12

c) Ta có: x/7=y/5=z/2 và x—y+z=—40

Áp Dụng dính chất dãy tỉ số bằng nhau, ta có:

x/7=y/5=z/2= x—y+z/7–5+2= —40/ 4=—10

Ta được: x= 7.(—10)=—70

y= 5.(—10)=—50

z= 2.(—10)=—20

28 tháng 10 2020

a, ( 152 +và 2/4 - 148 và 3/8 ) : 0,2 = x : 0,3

=>  33/8 : 1/5 = x : 3/10

=>  x : 3/10 = 165/8

=>  x = 99/10

b, ( 85 và 7/30 - 83 và 5/18 ) : 2 và 2/3 = 0,01x : 4

=>  88/45 : 8/3 = 0,01x : 4

=> 0,01x : 4 = 11/15

=> 0,01x = 44/15

=> x = 880/3

c, x - 1/ x + 5 = 6/7

=> 7( x - 1 ) = 6( x + 5 )

=> 7x - 7 = 6x + 30

=> 7x - 6x = 7 + 30

=> x = 37

d, x2/6 = 24/25

=> x2. 25 = 6 . 24

=> x2.25 = 144

=> x2 = 144/25

=> x = ( 12/5)2 hoặc x = ( -12/5)

g, x - 3/ x + 5 = 5/7

=> 7( x - 3 ) = 5 ( x + 5 )
=> 7x - 21 = 5x + 25

=> 7x - 5x = 21 + 25

=> 2x = 46

=> x = 23

3 tháng 10 2020

a) Ta có : \(\frac{x}{y}=\frac{6}{5}\) => \(\frac{x}{6}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{y}{5}=\frac{x+y}{6+5}=\frac{121}{11}=11\)

=> x = 11.6 = 66,y = 11.5 = 55

b) 4x = 5y => \(\frac{x}{5}=\frac{y}{4}\)=> \(\frac{2x}{10}=\frac{5y}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{10}=\frac{5y}{20}=\frac{2x-5y}{10-20}=\frac{40}{-10}=-4\)

=> x = (-4).5 = -20 , y = (-4).4 = -16

c) Đặt \(\frac{x}{3}=\frac{y}{16}=t\Rightarrow\hept{\begin{cases}x=3t\\y=16t\end{cases}}\)

=> xy = 3t.16t = 48t2

=> 48t2 = 192

=> t2 = 4

=> t = \(\pm\)2

Với t = 2 thì x = 3.2 = 6,y = 16.2 = 32

Với t = -2 thì x = -6,y = -32

d) \(\frac{x}{-3}=\frac{y}{7}\)

=> \(\frac{x^2}{9}=\frac{y^2}{49}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{9}=\frac{y^2}{49}=\frac{x^2-y^2}{9-49}=\frac{-360}{-40}=9\)

=> x2 = 9.9 = 81 => x = \(\pm\)9

y2 = 9.49 = 441 => y = \(\pm\)21

Câu e,f tương tự

3 tháng 10 2020

làm hộ mik cả câu e,f nx nhé

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này