Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}=k\)
\(\Rightarrow x-18=k.\left(x+4\right)\Rightarrow x=\dfrac{4k+18}{1-k}\left(1\right)\)
\(x-17=k.\left(x+16\right)\Rightarrow x=\dfrac{16k+17}{1-k}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow4k+18=16k+17\Rightarrow-12k=-1\Rightarrow k=\dfrac{1}{12}\)
\(\Rightarrow x=\dfrac{4.\dfrac{1}{12}+18}{1-\dfrac{1}{12}}=\dfrac{\dfrac{55}{3}}{\dfrac{11}{12}}=20\)
Vậy x = 20
\(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}\)
(x\(-\)18).(x+16)=(x-17).(x+4)
x\(^2\)-18x+16x-18.16=x\(^2\)-17x+4x-4.17
x\(^2\)-18x+16x-288=x\(^2\)-17x+4x-68
x\(^2\)-18x+16x-x\(^2\)+17x-4x=-68+288
11x=220
x=220/11
x=20
a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)
\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)
\(\Leftrightarrow x-4=25\)
\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)
b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)
\(\Leftrightarrow x\left(x+1\right)=18.4\)
\(\Leftrightarrow x\left(x+1\right)=72\)
vì \(72=8.9=\left(-8\right).\left(-9\right)\)
\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)
c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)
\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)
\(\Leftrightarrow2x+3-2x-8⋮x+4\)
\(\Leftrightarrow-5⋮x+4\)
\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)
a) Vì \(\dfrac{x}{y} = \dfrac{5}{3} \Rightarrow \dfrac{x}{5} = \dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{x + y}}{{5 + 3}} = \dfrac{{16}}{8} = 2\\ \Rightarrow x = 2.5 = 10\\y = 2.3 = 6\end{array}\)
Vậy x=10, y=6
b) Vì \(\dfrac{x}{y} = \dfrac{9}{4} \Rightarrow \dfrac{x}{9} = \dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{9} = \dfrac{y}{4} = \dfrac{{x - y}}{{9 - 4}} = \dfrac{{ - 15}}{5} = - 3\\ \Rightarrow x = ( - 3).9 = - 27\\y = ( - 3).4 = - 12\end{array}\)
Vậy x = -27, y = -12.
a) 1/20 - (x - 8/5) = 1/10
x - 8/5 = 1/20 - 1/10
x - 8/5 = -1/20
x = -1/20 + 8/5
x = 31/20
b) 7/4 - (x + 5/3) = -12/5
x + 5/3 = 7/4 + 12/5
x + 5/3 = 83/20
x = 83/20 - 5/3
x = 149/60
c) x - [17/2 - (-3/7 + 5/3)] = -1/3
x - (17/2 - 26/21) = -1/3
x - 305/42 = -1/3
x = -1/3 + 305/42
x = 97/14
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
\(\dfrac{x-3}{13}+\dfrac{x-3}{14}=\dfrac{x-3}{15}+\dfrac{x-3}{16}\)
\(\Leftrightarrow\dfrac{1680.\left(x-3\right)+1560.\left(x-3\right)-1456.\left(x-3\right)-1365.\left(x-3\right)}{21840}=0\)
\(\Leftrightarrow\left(x-3\right).\left(1680+1560-1456-1365\right)=0\)
\(\Leftrightarrow\left(x-3\right).419=0\)
\(\Leftrightarrow419x=1257\)
\(\Leftrightarrow x=3\)
Lời giải:
\(\frac{x-3}{13}+\frac{x-3}{14}=\frac{x-3}{15}+\frac{x-3}{16}\)
\((x-3)\left(\frac{1}{13}+\frac{1}{14}\right)=(x-3)\left(\frac{1}{15}+\frac{1}{16}\right)\)
\((x-3)\left[\left(\frac{1}{13}+\frac{1}{14}\right)-\left(\frac{1}{15}+\frac{1}{16}\right)\right]=0\)
Ta thấy:
\(\frac{1}{13}>\frac{1}{15}; \frac{1}{14}>\frac{1}{16}\Rightarrow \frac{1}{13}+\frac{1}{14}> \frac{1}{15}+\frac{1}{16}\)
Do đó biểu thức trong ngoặc vuông lớn hơn $0$ hay khác $0$
$\Rightarrow x-3=0$
$\Leftrightarrow x=3$
\(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}\)
⇒ (x-18) . (x+16) = (x-17) . (x+4)
x(x+16) -18(x+16) = x(x+4) - 17(x+4)
\(x^2+16x-18x-288=x^2+4x-17x-68\)
\(x^2+16-18x-x^2-4x+17x=-68+288\)
11x=220
x= 220 : 11
x = 20
\(\dfrac{x-18}{x+4}=\dfrac{x-17}{x+16}\)
\(\Leftrightarrow\left(x-18\right)\left(x+16\right)=\left(x-17\right)\left(x+4\right)\)
\(\Leftrightarrow x^2-2x-288=x^2-13x-68\)
\(\Leftrightarrow220=11x\)
\(\Leftrightarrow x=20\)
\(\)