\(\dfrac{3}{1.4}\)x + \(\dfrac{3}{4.7}\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2023

\(\dfrac{3}{1\times4}x+\dfrac{3}{4\times7}x+\dfrac{3}{7\times10}x+...+\dfrac{3}{31\times34}x=33\)

\(x\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+...+\dfrac{3}{31\times34}\right)=33\)

\(x\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=33\)

\(x\left(1-\dfrac{1}{34}\right)=33\)

\(\dfrac{33}{34}x=33\)

\(x=34\)

28 tháng 8 2023

\(\dfrac{3}{1.4}x+\dfrac{3}{4.7}x+\dfrac{3}{7.10}x+...+\dfrac{3}{31.34}x=33\)

\(x.3\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{31.34}\right)=33\)

\(x.3.\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{31}-\dfrac{1}{34}\right)=33\)

\(x.\left(1-\dfrac{1}{34}\right)=33\)

\(x.\dfrac{33}{34}=33\)

\(x=33:\dfrac{33}{34}=33.\dfrac{34}{33}\)

\(x=34\)

 

7 tháng 5 2018

ta có

x=x

=> x=x. :))

16 tháng 5 2017

5\(\dfrac{8}{17}\):x + (-\(\dfrac{1}{17}\)) : x + 3\(\dfrac{1}{17}\) : 17\(\dfrac{1}{3}\)= \(\dfrac{4}{17}\)

\(\dfrac{93}{17}\).\(\dfrac{1}{x}\) + (-\(\dfrac{1}{17}\)) .\(\dfrac{1}{x}\) +\(\dfrac{3}{17}\)= \(\dfrac{4}{17}\)

\(\dfrac{1}{x}\).\(\dfrac{92}{17}\)=\(\dfrac{1}{17}\)

\(\dfrac{1}{x}\)=\(\dfrac{1}{17}\):\(\dfrac{92}{17}\)
x= 92
16 tháng 5 2017

\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\)=\(\dfrac{6}{19}\)

3(\(\dfrac{1}{1.4}\)+\(\dfrac{1}{4.7}\)+\(\dfrac{1}{7.10}\)+...+\(\dfrac{1}{x.\left(x+3\right)}\))=3.\(\dfrac{6}{19}\)
\(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}=\dfrac{18}{19}\)
1-\(\dfrac{1}{x+3}\)=\(\dfrac{18}{19}\)
\(\dfrac{1}{x+3}\)=\(\dfrac{1}{19}\)
x+3 =19
x=19-3
x=17
30 tháng 6 2017

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{94.97}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(=1-\dfrac{1}{97}\)

\(=\dfrac{96}{97}\)

QT
Quoc Tran Anh Le
Giáo viên
15 tháng 12 2017

\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)

\(=3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\right)\)

\(=3\left(1-\dfrac{1}{97}\right)\)

\(=3.\dfrac{96}{97}=\dfrac{288}{97}\)

21 tháng 6 2017

\(S=\) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{97.100}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

21 tháng 6 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+.....+\dfrac{3}{97.100}\)

\(S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+....+\dfrac{1}{97}-\dfrac{1}{100}\)

(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với mọi \(a\in N\)*)

\(S=1-\dfrac{1}{100}=\dfrac{99}{100}\)

Vậy \(S=\dfrac{99}{100}\)

Chúc bạn học tốt!!!

25 tháng 5 2017

Ta có:

\(S=\dfrac{3}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{43}-\dfrac{1}{46}\right)\)

\(S=1.\left(\dfrac{1}{1}-\dfrac{1}{46}\right)\)

\(S=1.\dfrac{45}{46}=\dfrac{45}{46}\)

\(\dfrac{45}{46}< \dfrac{46}{46}\) nên \(\dfrac{45}{46}< 1\).

Vậy S < 1.

25 tháng 5 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{43.46}\)

\(S=\dfrac{3}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{43.46}\right)\)

Ta thấy:

\(\dfrac{3}{1.4}=1-\dfrac{1}{4};\dfrac{3}{4.7}=\dfrac{1}{4}-\dfrac{1}{7};\dfrac{3}{7.10}=\dfrac{1}{7}-\dfrac{1}{10};\)

\(...;\dfrac{3}{43.46}=\dfrac{1}{43}-\dfrac{1}{46}\)

\(\Rightarrow S=1\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{43}-\dfrac{1}{46}\right)\)

\(\Rightarrow S=1\left(1-\dfrac{1}{46}\right)\)

\(\Rightarrow S=1.\dfrac{45}{46}=\dfrac{45}{46}\)

7 tháng 5 2017

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...........+\dfrac{1}{x\left(x+3\right)}=\dfrac{6}{19}\)

\(\Rightarrow\dfrac{1}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...........+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{6}{19}\)

\(\Rightarrow\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+............+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{6}{19}\)

\(\Rightarrow\dfrac{1}{3}\left(1-\dfrac{1}{x+3}\right)=\dfrac{6}{19}\)

\(\Rightarrow1-\dfrac{1}{x+3}=\dfrac{6}{19}:\dfrac{1}{3}\)

\(\Rightarrow1-\dfrac{1}{x+3}=\dfrac{18}{19}\)

\(\Rightarrow\dfrac{1}{x+3}=1-\dfrac{18}{19}\)

\(\Rightarrow\dfrac{1}{x+3}=\dfrac{1}{19}\)

\(\Rightarrow x+3=19\)

\(\Rightarrow x=19-3\)

\(\Rightarrow x=16\)

Vậy \(x=16\) laf giá trị cần tìm

28 tháng 4 2018

1.

E = \(\dfrac{3}{1.4}\) + \(\dfrac{3}{4.7}\) + \(\dfrac{3}{7.10}\) + \(\dfrac{3}{10.13}\) + \(\dfrac{3}{13.16}\) + \(\dfrac{3}{16.19}\) + \(\dfrac{3}{19.22}\)

E = 1 - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{10}\) + ... +\(\dfrac{1}{19}\) - \(\dfrac{1}{22}\)

E = 1 - \(\dfrac{1}{22}\)

E = \(\dfrac{21}{22}\)

2.

(x - 4)(x - 5) = 0

TH1:

x - 4 = 0 => x = 4

TH2:

x - 5 = 0 => x = 5

Vậy: x = 4 hoặc x = 5

28 tháng 4 2018

Cho mình hỏi là số ở đâu ra luôn đc ko bạn?

1 tháng 6 2017

S = \(\dfrac{1}{1.4}\)+ \(\dfrac{1}{4.7}\)+...+\(\dfrac{1}{2002.2005}\)

S = ( 1 - \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)-\(\dfrac{1}{7}\)+\(\dfrac{1}{7}\)-...+\(\dfrac{1}{2002}\)-\(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = ( 1 - \(\dfrac{1}{2005}\)) . \(\dfrac{1}{3}\)

S = \(\dfrac{2004}{2005}\). \(\dfrac{1}{3}\)

S = \(\dfrac{2014}{6015}\)

1 tháng 6 2017

a) \(S=\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{2002.2005}\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{2002}-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}\left(1-\dfrac{1}{2005}\right)\)

\(=\dfrac{1}{3}.\dfrac{2004}{2005}=\dfrac{668}{2005}\)

KL.

b) \(P=\dfrac{3}{1.6}+\dfrac{3}{6.11}+\dfrac{3}{11.16}+...+\dfrac{3}{96.101}\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{96}-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}\left(1-\dfrac{1}{101}\right)\)

\(=\dfrac{3}{5}.\dfrac{100}{101}=\dfrac{60}{101}\)

KL.

c) \(Q=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{98.99.100}\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)

\(=\dfrac{1}{2}.\dfrac{1}{19800}=\dfrac{1}{39600}\)

KL.

16 tháng 11 2018

1/

a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)

\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)

\(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)

\(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)

16 tháng 11 2018

b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993

2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993

2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993

2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993

2.(1 − 1/x+1) = 3984/1993

1 − 1/x + 1= 3984/1993 :2

1 − 1/x+1 = 1992/1993

1/x+1 = 1 − 1992/1993

1/x+1=1/1993

<=>x+1 = 1993

<=>x+1=1993

<=> x+1=1993

<=> x = 1993-1

<=> x = 1992

27 tháng 6 2018

c) \(\dfrac{x+1}{35}+\dfrac{x+2}{34}+\dfrac{x+3}{33}=\dfrac{x+4}{32}+\dfrac{x+5}{31}+\dfrac{x+6}{30}\)

\(\Rightarrow\dfrac{x+1}{35}+1+\dfrac{x+2}{34}+1+\dfrac{x+3}{33}+1=\dfrac{x+4}{32}+1+\dfrac{x+5}{31}+1+\dfrac{x+6}{30}+1\)

\(\Rightarrow\dfrac{x+1+35}{35}+\dfrac{x+2+34}{34}+\dfrac{x+3+33}{33}=\dfrac{x+4+32}{32}+\dfrac{x+5+31}{31}+\dfrac{x+6+30}{30}\)

\(\Rightarrow\dfrac{x+36}{35}+\dfrac{x+36}{34}+\dfrac{x+36}{33}=\dfrac{x+36}{32}+\dfrac{x+36}{31}+\dfrac{x+36}{30}\)

\(\Rightarrow\dfrac{x+36}{35}+\dfrac{x+36}{34}+\dfrac{x+36}{33}-\dfrac{x+36}{32}-\dfrac{x+36}{31}-\dfrac{x+36}{30}=0\)

\(\Rightarrow\left(x+36\right)\left(\dfrac{1}{35}+\dfrac{1}{34}+\dfrac{1}{33}+\dfrac{1}{32}+\dfrac{1}{31}+\dfrac{1}{30}\right)=0\)

\(\Rightarrow x+36=0\left(\text{vì }\dfrac{1}{35}+\dfrac{1}{34}+\dfrac{1}{33}+\dfrac{1}{32}+\dfrac{1}{31}+\dfrac{1}{30}\ne0\right)\)

\(\Rightarrow x=-36\)

Vậy ...

27 tháng 6 2018

a/ Ta có: \(-4\dfrac{3}{5}.2\dfrac{4}{3}\le x\le-2\dfrac{3}{5}:1\dfrac{6}{15}\)

\(\Rightarrow\dfrac{-23}{5}.\dfrac{10}{3}\le x\le\dfrac{-13}{5}:\dfrac{21}{15}\)

\(\Rightarrow\dfrac{-46}{3}\le x\le\dfrac{-13}{5}.\dfrac{15}{21}\)

\(\Rightarrow\dfrac{-46}{3}\le x\le\dfrac{-13}{7}\)

\(\Rightarrow-15,\left(3\right)\le x\le-1,\left(857142\right)\)

Vì x \(\in\) Z nên x \(\in\left\{-1;-2;-3;...;-15\right\}\)

Chúc bạn học tốt!!!okokok