Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\cdot\left(x+1\right):2}=\dfrac{2016}{2018}\\ \dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\cdot\left(x+1\right)}=\dfrac{2016}{2018}\\ 2\cdot\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\cdot\left(x+1\right)}\right)=\dfrac{2016}{2018}\\ 2\cdot\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{x\cdot\left(x+1\right)}\right)=\dfrac{2016}{2018}\\ 2\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2016}{2018}:2\\ \dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1008}{2018}\\ \dfrac{1}{x+1}=\dfrac{1}{2}-\dfrac{1008}{2018}\\ \dfrac{1}{x+1}=\dfrac{1}{2018}\\ \Leftrightarrow x+1=2018\\ x=2018-1\\ x=2017\)
\(A=\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2014}{2016}\)
\(A=\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2014}{2016}\)
\(A=2\left(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2014}{2016}\)
\(A=\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1007}{2016}\)
\(A=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1007}{2016}\)
\(A=\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1007}{2016}\)
\(A=\dfrac{1}{x+1}=\dfrac{1}{2016}\)\(\Leftrightarrow x+1=2016\Leftrightarrow x=2015\)
Bài 1:
\(\left(-\dfrac{72}{40}-\dfrac{144}{60}-2\dfrac{1}{3}\right):\left(\dfrac{45}{100}-\dfrac{25}{60}+-\dfrac{75}{25}\right)\)
\(=\left(-\dfrac{9}{5}-\dfrac{12}{5}-\dfrac{7}{3}\right):\left(\dfrac{9}{20}-\dfrac{5}{12}+-3\right)\)
\(=\left(-\dfrac{27}{15}-\dfrac{36}{15}-\dfrac{21}{15}\right):\left(\dfrac{27}{60}-\dfrac{25}{60}+-3\right)\)
\(=\left(-\dfrac{28}{5}\right):\left(-\dfrac{89}{30}\right)\)
\(=\left(-\dfrac{28}{5}\right).\left(-\dfrac{30}{89}\right)\)
\(=\dfrac{168}{89}\)
a. \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{3}{4}\right)\le x\le\dfrac{1}{24}.\left(\dfrac{1}{3}-\dfrac{1}{3}\right)\)
\(\dfrac{1}{2}-\dfrac{13}{12}\le x\le\dfrac{1}{24}.0\) ( lười viết nên điền kết quả luôn )
\(\dfrac{-7}{12}\le x\le0\)
\(0,5833...\le x\le0\)
Vì \(x\in Z\)\(\Rightarrow x\in\left\{0\right\}\)
Vậy...
b. \(-4\dfrac{1}{3}\left(\dfrac{1}{2}+\dfrac{1}{6}\right)\le x\le\dfrac{-2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}.\dfrac{3}{4}\right)\)
\(\dfrac{-26}{9}\le x\le\dfrac{1}{36}\)
\(-2,8888...\le x\le0,277...\)
Vì \(x\in Z\Rightarrow x\in\left\{-2;-1;0\right\}\)
Vậy ...
Ta có:
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{10}\right)=\dfrac{x}{2010}\)
\(\Leftrightarrow\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.....\dfrac{9}{10}=\dfrac{x}{2010}\)
\(\Leftrightarrow\dfrac{1.2.3.....9}{2.3.4.....10}=\dfrac{x}{2010}\)
\(\Leftrightarrow\dfrac{1}{10}=\dfrac{x}{2010}\)
\(\Leftrightarrow x=\dfrac{2010}{10}\)
\(\Leftrightarrow x=201\)
Vậy x = 201
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)
a) \(\left(2x-3\right)\left(6-2x\right)=0\)
\(\circledast\)TH1: \(2x-3=0\\ 2x=0+3\\ 2x=3\\ x=\dfrac{3}{2}\)
\(\circledast\)TH2: \(6-2x=0\\ 2x=6-0\\ 2x=6\\ x=\dfrac{6}{2}=3\)
Vậy \(x\in\left\{\dfrac{3}{2};3\right\}\).
b) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(\dfrac{1}{3}x=0-\dfrac{2}{5}\left(x-1\right)\)
\(\dfrac{1}{3}x=-\dfrac{2}{5}\left(x-1\right)\)
\(-\dfrac{2}{5}-\dfrac{1}{3}=-x\left(x-1\right)\)
\(-\dfrac{11}{15}=-x\left(x-1\right)\)
\(\Rightarrow x=1.491631652\)
Vậy \(x=1.491631652\)
c) \(\left(3x-1\right)\left(-\dfrac{1}{2}x+5\right)=0\)
\(\circledast\)TH1: \(3x-1=0\\ 3x=0+1\\ 3x=1\\ x=\dfrac{1}{3}\)
\(\circledast\)TH2: \(-\dfrac{1}{2}x+5=0\\ -\dfrac{1}{2}x=0-5\\ -\dfrac{1}{2}x=-5\\ x=-5:-\dfrac{1}{2}\\ x=10\)
Vậy \(x\in\left\{\dfrac{1}{3};10\right\}\).
d) \(\dfrac{x}{5}=\dfrac{2}{3}\\ x=\dfrac{5\cdot2}{3}\\ x=\dfrac{10}{3}\)
Vậy \(x=\dfrac{10}{3}\).
e) \(\dfrac{x}{3}-\dfrac{1}{2}=\dfrac{1}{5}\\ \)
\(\dfrac{x}{3}=\dfrac{1}{5}+\dfrac{1}{2}\)
\(\dfrac{x}{3}=\dfrac{7}{10}\)
\(x=\dfrac{3\cdot7}{10}\)
\(x=\dfrac{21}{10}\)
Vậy \(x=\dfrac{21}{10}\).
f) \(\dfrac{x}{5}-\dfrac{1}{2}=\dfrac{6}{10}\)
\(\dfrac{x}{5}=\dfrac{6}{10}+\dfrac{1}{2}\)
\(\dfrac{x}{5}=\dfrac{11}{10}\)
\(x=\dfrac{5\cdot11}{10}\)
\(x=\dfrac{55}{10}=\dfrac{11}{2}\)
Vậy \(x=\dfrac{11}{2}\).
g) \(\dfrac{x+3}{15}=\dfrac{1}{3}\\ x+3=\dfrac{15}{3}=5\\ x=5-3\\ x=2\)
Vậy \(x=2\).
h) \(\dfrac{x-12}{4}=\dfrac{1}{2}\\ x-12=\dfrac{4}{2}=2\\ x=2+12\\ x=14\)
Vậy \(x=14\).
a, (\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)).10 - x = 0
<=> \(\dfrac{5}{6}.10-x=0\)
<=> \(\dfrac{25}{3}-x=0\)
<=> x = \(\dfrac{25}{3}\) (thỏa mãn)
@Hoàng Mạnh Quân
\(\Leftrightarrow\dfrac{2}{3}x+\dfrac{4}{3}-\dfrac{5}{4}x+\dfrac{5}{4}=\dfrac{15}{2}-\dfrac{3}{2}x-\dfrac{3}{2}\left(2x+3\right)\)
\(\Leftrightarrow x\cdot\dfrac{-7}{12}+\dfrac{31}{12}=\dfrac{-15}{2}x+3\)
=>83/12x=5/12
hay x=5/83
\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+..........+\dfrac{2}{x.\left(x+1\right)}=\dfrac{2014}{2016}\)
\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+.............+\dfrac{2}{x\left(x+1\right)}=\dfrac{2014}{2016}\)
\(\Leftrightarrow2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2014}{2016}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{2014}{2016}\)
\(\Leftrightarrow2\left(\dfrac{1}{2}-\dfrac{1}{x+1}\right)=\dfrac{2014}{2016}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1007}{2016}\)
\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2016}\)
\(\Leftrightarrow x+1=2016\)
\(\Leftrightarrow x=2015\left(tm\right)\)
Vậy ...........