\(\sqrt{2x-9}\)

b, \(\s...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2015

a) biểu thức có nghĩa \(\Leftrightarrow2x-9\ge0\Leftrightarrow2x\ge9\Leftrightarrow x\ge\frac{9}{2}\)

b) biểu thức có nghĩa \(\Leftrightarrow3-5x\ge0\Leftrightarrow5x\le3\Leftrightarrow x\le\frac{3}{5}\)

c) biểu thức có nghĩa \(\Leftrightarrow3x-3\ge0\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\)

20 tháng 10 2015

à, phần a ra x = 400. Nhầm

24 tháng 7 2019

a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)

b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)

c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)

\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)

d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)

\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)

24 tháng 7 2019

a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)

<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)

<=> \(\sqrt{x}+8=28\)

<=> \(\sqrt{x}=28-8\)

<=> \(\sqrt{x}=20\)

<=> \(\left(\sqrt{x}\right)^2=20^2\)

<=> x = 400

=> x = 400

b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)

<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)

<=> \(3\sqrt{x}+5=\sqrt{x}+12\)

<=> \(3\sqrt{x}=\sqrt{x}+12-5\)

<=> \(3\sqrt{x}=\sqrt{x}+7\)

<=> \(3\sqrt{x}-\sqrt{x}=7\)

<=> \(2\sqrt{x}=7\)

<=> \(\sqrt{x}=\frac{7}{2}\)

<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)

<=> \(x=\frac{49}{4}\)

=> \(x=\frac{49}{4}\)

c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)

<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)

<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)

<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)

<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)

<=> \(8\sqrt{x}=6\sqrt{x}+4\)

<=> \(8\sqrt{x}-6\sqrt{x}=4\)

<=> \(2\sqrt{x}=4\)

<=> \(\sqrt{x}=2\)

<=> \(\left(\sqrt{x}\right)^2=2^2\)

<=> x = 4

=> x = 4

d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)

<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)

<=>\(2\sqrt{3x}=6\sqrt{3x}\)

<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)

<=>\(-4\sqrt{3x}=0\)

<=> \(\sqrt{3x}=0\)

<=> \(\left(\sqrt{3x}\right)^2=0^2\)

<=> 3x = 0

<=> x = 0

=> x = 0

30 tháng 10 2015

Có nghĩa khi 

a/ \(2x-9\ge0\Rightarrow2x\ge9\Rightarrow x\ge\frac{9}{2}\)

b/ \(3-5x\ge0\Rightarrow-5x\ge-3\Rightarrow x\le\frac{3}{5}\)

c/ \(3x-3\ge0\Rightarrow3x\ge3\Rightarrow x\ge1\)

30 tháng 10 2015

hả , cái biểu thức chi vậy>?

13 tháng 11 2016

a) 2|2/3 - x| = 1/2

|2/3 - x| = 1/4

|2/3 - x| = 1/4 hoặc |2/3 - x| = -1/4

Xét 2 TH...

7 tháng 11 2016

Bài 1:

a) Ta có: \(6=\sqrt{36}< \sqrt{37}\)

Vậy \(6< \sqrt{37}\)

b) Ta có: \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)

Vậy \(2\sqrt{3}< 3\sqrt{2}\)

p/s: Bạn có thể lấy số gần mà tính cũng được do mình nghĩ lớp 7 chưa học mà học rồi thì làm cách trên cho nhanh nhé.

c) Ta có: \(\sqrt{63}\approx7,4;\sqrt{35}\approx6\)

\(7,4+6=13,4< 14\Rightarrow\sqrt{63}+\sqrt{35}< 14\)

Câu 2: a) \(\sqrt{x-1}=\frac{1}{2}\Rightarrow\left(\sqrt{x-1}\right)^2=\left(\frac{1}{2}\right)^2\Rightarrow x-1=\frac{1}{4}\Rightarrow x=\frac{5}{4}\)

b) \(\sqrt{\left(x-1\right)^2}=9=\sqrt{81}\Rightarrow\left(x-1\right)^2=81\Rightarrow x-1\in\left\{\pm9\right\}\Rightarrow x\in\left\{10;-8\right\}\)

c) \(2\sqrt{3x-2}=3\Rightarrow\sqrt{3x-2}=\frac{3}{2}=\sqrt{\frac{9}{4}}\Rightarrow3x-2=\frac{9}{4}\Rightarrow x=\frac{17}{12}\)

 

7 tháng 11 2016

bn chờ mk một tí

hà nội k vội dc đâu