Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\left|3x+4\right|=2\left|2x-9\right|\)
=> \(\orbr{\begin{cases}3x+4=2\left(-2x+9\right)\\3x+4=2\left(2x-9\right)\end{cases}}\Rightarrow\orbr{\begin{cases}3x+4=-4x+18\\3x+4=4x-18\end{cases}}\Rightarrow\orbr{\begin{cases}7x=14\\-x=-22\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=22\end{cases}}\)
=> \(x\in\left\{2;22\right\}\)
b) Ta có : \(\left|10x+7\right|< 37\)
=> -37 < 10x + 7 < 37
=> -44 < 10x < 30
=> -4,4 < x < 3
Vậy -4,4 < x < 3
c) |3 - 8x| \(\le\)19
=> \(-19\le3-8x\le19\)
=> \(\hept{\begin{cases}3-8x\ge-19\\3-8x\le19\end{cases}}\Rightarrow\hept{\begin{cases}22\ge8x\\-16\le8x\end{cases}}\Rightarrow\hept{\begin{cases}x\le\frac{11}{4}\\x\ge-2\end{cases}}\Rightarrow-2\le x\le\frac{11}{4}\)
d) Ta có |x + 3| - 2x = |x - 4| (1)
Nếu x < -3
=> |x + 3| = -(x + 3) = -x - 3
=> |x - 4| = -(x - 4) = -x + 4
Khi đó (1) <=> -x - 3 - 2x = - x + 4
=> -3x - 3 = - x + 4
=> -2x = 7
=> x = - 3,5 (tm)
Nếu \(-3\le x\le4\)
=> |x + 3| = x + 3
=> |x - 4| = -(x - 4) = -x + 4
Khi đó (1) <=> x + 3 - 2x = -x + 4
=> -x + 3 = -x + 4
=> 0x = 1 (loại)
Nếu x > 4
=> |x + 3| = x + 3
=> |x - 4| = x + 4
Khi đó (1) <=> x + 3 - 2x = x - 4
=> -x + 3 = x - 4
=> -2x = -7
=> x = 3,5 (loại)
Vậy x = -3,5
\(\left|3x+4\right|=2\left|2x-9\right|\)
\(\left|3x+4\right|\ge0\)
\(\left|2x-9\right|\ge0\Rightarrow2\left|2x-9\right|\ge0\)
\(\Rightarrow3x+4=2\left(2x-9\right)\)
\(3x+4=4x-18\)
\(3x=4x-14\)
\(x=14\)
\(\left|10x+7\right|\le37\)
\(\Rightarrow\left|10x+7\right|\le\left\{37;36;35;......;0\right\}\)
\(10x+7\le\left\{\pm37;\pm36;\pm35;.....0\right\}\)
Tự tính tiếp.C tương tự
\(\left|x+3\right|-2x=\left|x-4\right|\)
\(\left|x+3\right|=\left|x-4\right|+2x\)
\(\left|x+3\right|\ge0\)
\(\left|x-4\right|\ge0\)
\(\Rightarrow x+3=x-4+2x\)
\(x+3=3x-4\)
\(x=3x-7\)
\(x=\dfrac{7}{2}\)
a) \(\left|15x-1\right|>31\)
\(\Rightarrow-31< 15x-1< 31\)
\(\Rightarrow-31+1< 15x-1+1< 31+1\)
\(\Rightarrow-30< 15x< 32\)
\(\Rightarrow-2< x< \frac{32}{15}\)
b) \(\left|2x-4\right|+4\ge25\)
\(\Rightarrow\left|2x-4\right|+4-4\ge25-4\)
\(\Rightarrow\left|2x-4\right|\ge21\)
\(\Rightarrow\hept{\begin{cases}2x-4\le-21\\2x-4\ge21\end{cases}}\Rightarrow\hept{\begin{cases}2x\le-17\\2x\ge25\end{cases}}\Rightarrow\hept{\begin{cases}x\le-\frac{17}{2}\\x\ge\frac{25}{2}\end{cases}}\)
Vậy \(x\le-\frac{17}{2}\) hoặc \(x\ge\frac{25}{2}\)thì thõa mãn đề bài
a) \(\left|15x-1\right|>31\)
\(\Rightarrow\left\{x\in N\right\}\left\{x>2\right\}\)
trường hợp 1 :
10x + 7 \(\ge\)0 <=> x \(\ge\) \(\frac{-7}{10}\)
=> |10x +7 | = 10x + 7 (*)
thay (*) vào biểu thức ta có :
10x + 7 \(\le\)37
<=> 10x \(\le\)30
<=> x \(\le\)3
trường hợp 2 :
10x + 7 < 0 <=> x < \(\frac{-7}{10}\)
=> |10x + 7| = -10x - 7 (**)
thay (**) vào biểu thức ta có :
- 10x - 7 \(\le\) 37
<=> -10x \(\le\)44
<=> x \(\ge\)- 4,4 (mình đổi chiều dấu là vì cả hai đều chia cho - 10 nếu chia cho âm thì phải đổi dấu nha)
trường hợp 1 :
3 - 8x \(\ge\)0 <=> x\(\le\)\(\frac{3}{8}\)(chia cho số âm thì dấu vị đổi chiều nha)
=> | 3 - 8x | = 3 - 8x (*)
thay (*) vào biểu thức ta có :
3 - 8x \(\le\)19
<=> - 8x \(\le\)17
<=> x \(\ge\)\(\frac{-17}{8}\)( cái này là chia cho -8 nên đổi chiều và thường người ta đặt dấu âm vào tử số nha bạn)
trường hợp 2 :
3 - 8x < 0 <=> x > \(\frac{3}{8}\)
=> | 3 - 8x | = - ( 3 - 8x ) = -3 + 8x (**)
thay (**) vào biểu thức ta có :
8x - 3 \(\le\)19
<=> 8x \(\le\)22
<=> x\(\le\)2,75
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)