Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
f/ \(3xy\left(x+y\right)-\left(x+y\right)\left(x^2+y^2+2xy\right)+y^3=27\)
\(3x^2y+3xy^2-\left(x+y\right)\left(x+y\right)^2+y^3=27\)
\(3x^2y+3xy^3-\left(x+y\right)^3+y^3=27\)
\(3x^2y+3xy^3-\left(x^3+3x^2y+3xy^2+b^3\right)+y^3=27\)
\(-x^3=27\)
\(x=-3\)
\(a,3\left(2x-3\right)+2\left(2-x\right)=-3\\ \Leftrightarrow6x-9+4-2x=-3\\ \Leftrightarrow4x=2\\ \Leftrightarrow x=\dfrac{1}{2}\\ b,x\left(5-2x\right)+2x\left(x-1\right)=13\\ \Leftrightarrow5x-2x^2+2x^2-2x=13\\ \Leftrightarrow3x=13\\ \Leftrightarrow x=\dfrac{13}{3}\\ c,5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\\ \Leftrightarrow5x^2-5x-5x^2-3x+14=6\\ \Leftrightarrow-8x=-8\\ \Leftrightarrow x=1\\ d,3x\left(2x+3\right)-\left(2x+5\right)\left(3x-2\right)=8\\ \Leftrightarrow6x^2+9x-6x^2-11x+10=8\\ \Leftrightarrow-2x=-2\\ \Leftrightarrow x=1\)
\(e,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\\ \Leftrightarrow10x-16-12x+15=12x-16+11\\ \Leftrightarrow-14x=-4\\ \Leftrightarrow x=\dfrac{2}{7}\\ f,2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\\ \Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\\ \Leftrightarrow-x^3-8=0\\ \Leftrightarrow-\left(x^3+8\right)=0\\ \Leftrightarrow-\left(x+2\right)\left(x^2-2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\left(x^2-2x+4=\left(x-1\right)^2+3>0\right)\end{matrix}\right.\)
Bài 4:
a: Ta có: \(3\left(2x-3\right)-2\left(x-2\right)=-3\)
\(\Leftrightarrow6x-9-2x+4=-3\)
\(\Leftrightarrow4x=2\)
hay \(x=\dfrac{1}{2}\)
b: Ta có: \(x\left(5-2x\right)+2x\left(x-1\right)=13\)
\(\Leftrightarrow5x-2x^2+2x^2-2x=13\)
\(\Leftrightarrow3x=13\)
hay \(x=\dfrac{13}{3}\)
c: Ta có: \(5x\left(x-1\right)-\left(x+2\right)\left(5x-7\right)=6\)
\(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)
\(\Leftrightarrow-8x=-8\)
hay x=1
a: =>17x-5x-15-2x-5=0
=>10x-20=0
=>x=2
b: =>\(\dfrac{3x-6-5x-10}{\left(x+2\right)\left(x-2\right)}=\dfrac{11x+23}{\left(x+2\right)\left(x-2\right)}\)
=>11x+23=-2x-16
=>13x=-39
=>x=-3(nhận)
c: =>5x+7>=3x-3
=>2x>=-10
=>x>=-5
d: =>5(3x-1)=-2(x+1)
=>15x-5=-2x-2
=>17x=3
=>x=3/17
e: =>4x^2-1-4x^2-3x-2=0
=>-3x-3=0
=>x=-1
g: =>7x-5-8x+2-7<0
=>-x-10<0
=>x+10>0
=>x>-10
a)
\(2x+3=(2x+3)^2\)
\(\Leftrightarrow (2x+3)^2-(2x+3)=0\)
\(\Leftrightarrow (2x+3)(2x+3-1)=0\)
\(\Leftrightarrow (2x+3)(2x+2)=0\Rightarrow \left[\begin{matrix} 2x+3=0\\ 2x+2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-\frac{3}{2}\\ x=-1\end{matrix}\right.\)
b) \((x-5)^2=5-x\)
\(\Leftrightarrow (x-5)^2+(x-5)=0\)
\(\Leftrightarrow (x-5)(x-5+1)=0\)
\(\Leftrightarrow (x-5)(x-4)=0\)
\(\Rightarrow \left[\begin{matrix} x-5=0\\ x-4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=5\\ x=4\end{matrix}\right.\)
c) \((x+2)^3=x+2\)
\(\Leftrightarrow (x+2)^3-(x+2)=0\)
\(\Leftrightarrow (x+2)[(x+2)^2-1]=0\)
\(\Leftrightarrow (x+2)(x+2-1)(x+2+1)=0\)
\(\Leftrightarrow (x+2)(x+1)(x+3)=0\)
\(\Rightarrow \left[\begin{matrix} x+2=0\\ x+1=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=-1\\ x=-3\end{matrix}\right.\)
d)
\(|3x-1|=(1-3x)^2\)
\(\Leftrightarrow |3x-1|=|3x-1|^2\)
\(\Leftrightarrow |3x-1|^2-|3x-1|=0\)
\(\Leftrightarrow |3x-1|(|3x-1|-1)=0\)
\(\Rightarrow \left[\begin{matrix} |3x-1|=0\\ |3x-1|-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} |3x-1|=0\\ |3x-1|=1\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} 3x-1=0\\ 3x-1=\pm 1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{3}\\ x=\frac{2}{3}\\ x=0\end{matrix}\right.\)
e)
\(2x+(x+3)(3-x)+(x+1)(x-1)=7\)
\(\Leftrightarrow 2x+(3^2-x^2)+(x^2-1^2)=7\)
\(\Leftrightarrow 2x=-1\Rightarrow x=-\frac{1}{2}\)